Skip to main content

Controlled Cortical Impact Injury Model

  • Protocol
Animal Models of Acute Neurological Injuries

Part of the book series: Springer Protocols Handbooks ((SPH))

Controlled focal mechanical cortical deformations in rodents have been widely used to model histological, physiological, neurochemical, and functional aspects of human traumatic brain injury. The most common technique termed controlled cortical impact (CCI) utilizes a mechanically actuated piston to control the velocity and depth of cortical impact. In this chapter, we introduce step-by-step procedures to perform a typical CCI in rodents. Details regarding anesthesia, surgery and CCI device operation are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lighthall JW. Controlled cortical impact: A new experimental brain injury model. J Neurotrauma 1988;5(1):1–15.

    PubMed  CAS  Google Scholar 

  2. Lighthall JW, Goshgarian HG, Pinderski CR. Characterization of axonal injury produced by controlled cortical impact. J Neurotrauma 1990;7(2):65–76.

    PubMed  CAS  Google Scholar 

  3. Dixon CE, Clifton GL, Lighthall LW, Yaghmai AA, Hayes RL. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Meth 1991;39:253–262.

    Article  CAS  Google Scholar 

  4. Bilgen M. A new device for experimental modeling of central nervous system injuries. Neurorehabil Neural Repair 2005;19(3):219–226.

    Article  PubMed  Google Scholar 

  5. Bayly PV, Dikranian KT, Black EE, Young C, Qin Y-Q, Labruyere J, Olney JW. Spatiotemporal evolution of apoptotic neurodegeneration following traumatic injury to the developing rat brain. Brain Res 2006;1107(1): 70–81.

    Article  PubMed  CAS  Google Scholar 

  6. Brody DL, Mac Donald C, Kessens CC, Yuede C, Parsadanian M, Spinner M, Kim E, Schwetye KE, Holtzman DM, Bayly PV. Electromagnetic controlled cortical impact device for precise, graded experimental traumatic brain injury. J Neurotrauma 2007;24(4):657–673.

    Article  PubMed  Google Scholar 

  7. Goodman JC, Cherian L, Bryan RM, Robertson CS. Lateral cortical impact injury in rats: Pathologic effects of varying cortical compression and impact velocity. J Neurotrauma 1994;11(5):587–597.

    PubMed  CAS  Google Scholar 

  8. Meaney DF, Ross DT, Winkelstein BA, Brasko J, Goldstein D, Bilston LB, Thibault LE, Gennarelli TA. Modification of the cortical impact model to produce axonal injury in the rat cerebral cortex. J Neurotrauma 1994;11(5):599–612.

    PubMed  CAS  Google Scholar 

  9. Dhillon HS, Donaldson D, Dempsey RJ, Prasad MR. Regional levels of free fatty acids and Evans blue extravasation after experimental brain injury. J Neurotrauma 1994;11(4):405–415.

    PubMed  CAS  Google Scholar 

  10. Kochanek P, Marion DW, Zhang W, Schiding JK, White M, Palmer AM, Clark RS, O'Malley ME, Styren SD, Ho C, et al. Severe controlled cortical impact in rats: Assessment of cererbral edema, blood flow, and contusion volume. J Neurotrauma 1995;12(6):1015–1025.

    Article  PubMed  CAS  Google Scholar 

  11. Baldwin SA, Gibson T, Callihan CT, Sullivan PG, Palmer E, Scheff SW. Neuronal cell loss in the CA3 subfield of the hippocampus following cortical contusion utilizing the optical disector method for cell counting. J Neurotrauma 1997;14(6):385–398.

    PubMed  CAS  Google Scholar 

  12. Kline AE, Massucci JL, Dixon CE, Zafonte RD, Bolinger BD. The therapeutic efficacy conferred by the 5-HT(1A) receptor agonist 8-Hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) after experimental traumatic brain injury is not mediated by concomitant hypothermia. J Neurotrauma 2004;21:175–185.

    Article  PubMed  Google Scholar 

  13. Kline AE, Wagner AK, Westergom BP, Malena RR, Zafonte RD, Olsen AS, Sozda CN, Luthra P, Panda M, Cheng JP, Aslam HA. Acute treatment with the 5-HT1A receptor agonist 8-OH-DPAT and chronic environmental enrichment confer neurobehavioral benefit after experimental brain trauma. Behav Brain Res 2007;177:186–194.

    Article  PubMed  CAS  Google Scholar 

  14. Dixon CE, Ma X, Kline AE, Yan HQ, Ferimer H, Kochanek PM, Wisniewski SR, Jenkins LW, Marion DW. Acute etomidate treatment reduces cognitive deficits and histopathology in traumatic brain injured rats. Crit Care Med 2003;31(8):2222–2227.

    Article  PubMed  Google Scholar 

  15. Feeney DM, Gonzalez A, Law WA. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 1982;217: 855–857.

    Article  PubMed  CAS  Google Scholar 

  16. Hall ED. High-dose glucocorticoid treatment improves neurological recovery in head-injured mice. J Neurosurgery 1985;62: 882–887.

    CAS  Google Scholar 

  17. Morris RG, Garrud P, Rawlins JN, O'Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature 1982;297:681–683.

    Article  PubMed  CAS  Google Scholar 

  18. Smith DH, Okiyama K, Thomas MJ, Claussen B, McIntosh TK. Evaluation of memory dysfunction following experimental brain injury using the Morris water maze. J Neurotrauma 1991;8(4):259–269.

    Article  PubMed  CAS  Google Scholar 

  19. Hamm RJ, Dixon CE, Gbadebo DM, Singha AK, Lyeth BG, Jenkins LW, Hayes RL. Cognitive deficits following traumatic brain injury produced by controlled cortical impact. J Neurotrauma 1992;9(1):11–20.

    PubMed  CAS  Google Scholar 

  20. Kline AE, Bolinger B, Kochanek PM, Carlos TM, Yan HQ, Jenkins LW, Marion DW, Dixon CE. Systemic administration of interleukin-10 suppresses the beneficial effects of moderate hypothermia following traumatic brain injury in rats. Brain Res 2002;937:22–31.

    Article  PubMed  CAS  Google Scholar 

  21. Kline AE, Massucci JL, Ma X, Zafonte RD, Dixon CE. Bromocriptine reduces lipid peroxidation and enhances spatial learning and hippocampal neuron survival in a rodent model of focal brain trauma. J Neurotrauma 2004;21:1712–1722.

    Article  PubMed  Google Scholar 

  22. Kline AE, Massucci JL, Zafonte RD, Dixon CE, DeFeo JR, Rogers EH. Differential effects of single versus multiple administrations of haloperidol and risperidone on functional outcome after experimental brain trauma. Crit Care Med 2007;35:919–924.

    Article  PubMed  CAS  Google Scholar 

  23. Dash PK, Mach SA, Blum S, Moore AN. Intrahippocampal wortmannin infusion enhances long-term spatial and contextual memories. Learn Mem 2002;9(4):167–177.

    Article  PubMed  Google Scholar 

  24. Smith DH, Soares HD, Pierce JS, Perlman KG, Saatman KE, Meaney DF, Dixon CE, McIntosh TK. A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma 1995;12(2):169–178.

    PubMed  CAS  Google Scholar 

  25. Manley GT, Rosenthal G, Lam M, Morabito D, Yan D, Derugin N, Bollen A, Knudson MM, Panter SS. Controlled cortical impact in swine: Pathophysiology and biomechanics. J Neurotrauma 2006;23(2):128–139.

    Article  PubMed  Google Scholar 

  26. Nemoto EM, Rao G, Robinson T, Saunders T, Kirkman J, Davis D, Kuwabara H, Dixon CE. Effect of local cooling (15 degrees C for 24 hours) with the Chillerpad after traumatic brain injury in the nonhuman primate. Adv Exp Med Biol 2006;578: 311–315.

    Article  PubMed  Google Scholar 

  27. Thompson SN, Gibson TR, Thompson BM, Deng Y, Hall ED. Relationship of cal-pain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice. Exp Neurol 2006;201(1):253–265.

    Article  PubMed  CAS  Google Scholar 

  28. Statler KD, Alexander HL, Vagni V, Dixon CE, Clark RSB, Jenkins L, Kochanek PM. Comparison of seven anesthetics on outcome after traumatic brain injury by controlled cortical impact in adult, male rats. J Neurotrauma 2006;23(1):97–108.

    Article  PubMed  Google Scholar 

  29. Dixon CE. The application of rodent models to the study of brain injury biome-chanics. In: Hoerner EF, ed. Head and Neck Injuries in Sports, ASTM STP 1229. Philadelphia: American Society for Testing and Materials, 1994:154–167.

    Google Scholar 

  30. Hoffman SW, Fülöp Z, Stein DG. Bilateral frontal cortical contusion in rats: Behavioral and anatomic consequences. J Neurotrauma 1994;11(4):417–431.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Dixon, C.E., Kline, A.E. (2009). Controlled Cortical Impact Injury Model. In: Chen, J., Xu, Z.C., Xu, XM., Zhang, J.H. (eds) Animal Models of Acute Neurological Injuries. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60327-185-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-185-1_33

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-184-4

  • Online ISBN: 978-1-60327-185-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics