Skip to main content

RNA Structure Determination by NMR

  • Protocol
Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 452))

Abstract

This chapter reviews the methodologies for RNA structure determination by liquid-state nuclear magnetic resonance (NMR). The routine production of milligram quantities of isotopically labeled RNA remains critical to the success of NMR-based structure studies. The standard method for the preparation of isotopically labeled RNA for structural studies in solution is in vitro transcription from DNA oligonucleotide templates using T7 RNA polymerase and unlabeled or isotopically labeled nucleotide triphosphates (NTPs). The purification of the desired RNA can be performed by either denaturing polyacrylamide gel electrophoresis (PAGE) or anion-exchange chromatography. Our basic strategy for studying RNA in solution by NMR is outlined. The topics covered include RNA resonance assignment, restraint collection, and the structure calculation process. Selected examples of NMR spectra are given for a correctly folded 30 nucleotide-containing RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leulliot, N., Varani, G. (2001) Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and con-formational capture. Biochemistry 40, 7947–7956.

    PubMed  CAS  Google Scholar 

  2. Williamson, J. R. (2000) Induced fit in RNA-protein recognition. Nat Struct Biol 7, 834–837.

    PubMed  CAS  Google Scholar 

  3. Milligan, J. F., Groebe, D. R., Witherell, G. W., et al. (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15, 8783–8798.

    PubMed  CAS  Google Scholar 

  4. Milligan, J. F., Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180, 51–62.

    PubMed  CAS  Google Scholar 

  5. Perez-Canadillas, J. M., Varani, G. (2001) Recent advances in RNA-protein recognition. Curr Opin Struct Biol 11, 53–58.

    PubMed  CAS  Google Scholar 

  6. Batey, R. T., Battiste, J. L., Williamson, J. R. (1995) Preparation of isotopically enriched RNAs for heteronuclear NMR. Methods Enzymol 261, 300–322.

    PubMed  CAS  Google Scholar 

  7. Batey, R. T., Cloutier, N., Mao, H., et al. (1996) Improved large scale culture of Methylophilus methylotrophus for 13C/15N labeling and random fractional deuteration of ribonucleotides. Nucleic Acids Res 24, 4836–4837.

    PubMed  CAS  Google Scholar 

  8. Batey, R. T., Inada, M., Kujawinski, E., et al. (1992) Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res 20, 4515–4523.

    PubMed  CAS  Google Scholar 

  9. Nikonowicz, E. P., Sirr, A., Legault, P., et al. (1992) Preparation of 13C and 15N labelled RNAs for heteronuclear multidimensional NMR studies. Nucleic Acids Res 20, 4507–4513.

    PubMed  CAS  Google Scholar 

  10. Zidek, L., Stefl, R., Sklenar, V. (2001) NMR methodology for the study of nucleic acids. Curr Opin Struct Biol 11, 275–281.

    PubMed  CAS  Google Scholar 

  11. Cromsigt, J., van Buuren, B., Schleucher, J., et al. (2001) Resonance assignment and structure determination for RNA. Methods Enzymol 338, 371–399.

    PubMed  CAS  Google Scholar 

  12. Furtig, B., Richter, C., Wohnert, J., et al. (2003) NMR spectroscopy of RNA. Chem-biochem 4, 936–962.

    Google Scholar 

  13. Latham, M. P., Brown, D. J., McCallum, S. A., et al. (2005) NMR methods for studying the structure and dynamics of RNA. Chembiochemistry 6, 1492–1505.

    CAS  Google Scholar 

  14. Wu, H., Finger, L. D., Feigon, J. (2005) Structure determination of protein/RNA complexes by NMR. Methods Enzymol 394, 525–545.

    PubMed  CAS  Google Scholar 

  15. Bax, A., Kontaxis, G., Tjandra, N. (2001) Dipolar couplings in macromolecular structure determination. Methods Enzymol 339, 127–174.

    PubMed  CAS  Google Scholar 

  16. Hansen, M. R., Mueller, L., Pardi, A. (1998) Tunable alignment of macromol-ecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5, 1065–1074.

    PubMed  CAS  Google Scholar 

  17. Tjandra, N., Bax, A. (1997) Direct measurement of distances and angles in biomol-ecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114.

    PubMed  CAS  Google Scholar 

  18. Reif, B., Hennig, M., Griesinger, C. (1997) Direct measurement of angles between bond vectors in high-resolution NMR. Science 276, 1230–1233.

    PubMed  CAS  Google Scholar 

  19. Schwalbe, H., Carlomagno, T., Hennig, M., et al. (2001) Cross-correlated relaxation for measurement of angles between tensorial interactions. Methods Enzymol 338, 35–81.

    PubMed  CAS  Google Scholar 

  20. Dingley, A. J., Grzesiek, S. (1998) Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide (2)J(NN) couplings. J Am Chem Soc 120, 8293–8297.

    CAS  Google Scholar 

  21. Pervushin, K., Ono, A., Fernandez, C., et al. (1998) NMR scaler couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation optimized spectroscopy. Proc Natl Acad Sci U S A 95, 14147–14151.

    PubMed  CAS  Google Scholar 

  22. Churcher, M. J., Lamont, C., Hamy, F., et al. (1993) High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region. J Mol Biol 230, 90–110.

    PubMed  CAS  Google Scholar 

  23. Long, K. S., Crothers, D. M. (1995) Interaction of human immunodeficiency virus type 1 Tat-derived peptides with TAR RNA. Biochemistry 34, 8885–8895.

    PubMed  CAS  Google Scholar 

  24. Tao, J., Frankel, A. D. (1992) Specific binding of arginine to TAR RNA. Proc Natl Acad Sci U S A 89, 2723–2726.

    PubMed  CAS  Google Scholar 

  25. Tao, J., Frankel, A. D. (1993) Electrostatic interactions modulate the RNA-binding and transactivation specificities of the human immunodeficiency virus and simian immunodeficiency virus Tat proteins. Proc Natl Acad Sci U S A 90, 1571–1575.

    PubMed  CAS  Google Scholar 

  26. Puglisi, J. D., Chen, L., Frankel, A. D., et al. (1993) Role of RNA structure in arginine recognition of TAR RNA. Proc Natl Acad Sci U S A 90, 3680–3684.

    PubMed  CAS  Google Scholar 

  27. Puglisi, J. D., Tan, R., Calnan, B. J., et al. (1992) Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science 257, 76–80.

    PubMed  CAS  Google Scholar 

  28. Aboul-ela, F., Karn, J., Varani, G. (1995) The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J Mol Biol 253, 313–332.

    PubMed  CAS  Google Scholar 

  29. Brodsky, A. S., Williamson, J. R. (1997) Solution structure of the HIV-2 TAR-argininamide complex. J Mol Biol 267, 624–639.

    PubMed  CAS  Google Scholar 

  30. Aboul-ela, F., Karn, J., Varani, G. (1996) Structure of HIV-1 TAR RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge. Nucleic Acids Res 24, 3974–3781.

    PubMed  CAS  Google Scholar 

  31. Long, K. S., Crothers, D. M. (1999) Characterization of the solution conformations of unbound and Tat peptide-bound forms of HIV-1 TAR RNA. Biochemistry 38, 10059–10069.

    PubMed  CAS  Google Scholar 

  32. Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  33. Yin, Y., Carter, C. W., Jr. (1996) Incomplete factorial and response surface methods in experimental design: yield optimization of tRNA(Trp) from in vitro T7 RNA polymerase transcription. Nucleic Acids Res 24, 1279–1286.

    PubMed  CAS  Google Scholar 

  34. Wyatt, J. R., Chastain, M., Puglisi, J. D. (1991) Synthesis and purification of large amounts of RNA oligonucleotides. Biotechniques 11, 764–769.

    PubMed  CAS  Google Scholar 

  35. Anderson, A. C., Scaringe, S. A., Earp, B. E., et al. (1996) HPLC purification of RNA for crystallography and NMR. RNA 2, 110–117.

    PubMed  CAS  Google Scholar 

  36. Shields, T. P., Mollova, E., Ste Marie, L., et al. (1999) High-performance liquid chromatography purification of homogenous-length RNA produced by trans cleavage with a hammerhead ribozyme. RNA 5, 1259–1267.

    PubMed  CAS  Google Scholar 

  37. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York.

    Google Scholar 

  38. Nikonowicz, E. P., Pardi, A. (1992) Three-dimensional heteronuclear NMR studies of RNA. Nature 355, 184–186.

    PubMed  CAS  Google Scholar 

  39. Nikonowicz, E. P., Pardi, A. (1993) An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids. J Mol Biol 232, 1141–1156.

    PubMed  CAS  Google Scholar 

  40. Wijmenga, S. S., van Buuren, B. N. M. (1998) The use of NMR methods for con-formational studies of nucleic acids. Prog Nucl Magn Reson Spectrosc 32, 287–387.

    CAS  Google Scholar 

  41. Zhou, H., Vermeulen, A., Jucker, F. M., et al. (1999) Incorporating residual dipolar couplings into the NMR solution structure determination of nucleic acids. Biopolymers 52, 168–180.

    PubMed  CAS  Google Scholar 

  42. Hansen, M. R., Hanson, P., Pardi, A. (2000) Filamentous bacteriophage for aligning RNA, DNA, and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions. Methods Enzymol 317, 220–240.

    PubMed  CAS  Google Scholar 

  43. Meiler, J., Prompers, J. J., Peti, W., et al. (2001) Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins. J Am Chem Soc 123, 6098–6107.

    PubMed  CAS  Google Scholar 

  44. Peti, W., Meiler, J., Bruschweiler, R., et al. (2002) Model-free analysis of protein backbone motion from residual dipolar couplings. J Am Chem Soc 124, 5822–5833.

    PubMed  CAS  Google Scholar 

  45. Tolman, J. R. (2002) A novel approach to the retrieval of structural and dynamic information from residual dipolar couplings using several oriented media in biomolecu-lar NMR spectroscopy. J Am Chem Soc 124, 12020–12030.

    PubMed  CAS  Google Scholar 

  46. Lippens, G., Dhalluin, C., Wieruszeski, J. M. (1995) Use of a Water Flip-Back Pulse in the Homonuclear Noesy Experiment. J Biomol Nmr 5, 327–331.

    CAS  Google Scholar 

  47. Peterson, R. D., Theimer, C. A., Wu, H. H., et al. (2004) New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA-pro-tein complexes. J Biomol Nmr 28, 59–67.

    PubMed  CAS  Google Scholar 

  48. Duchardt, E., Richter, C., Reif, B., et al. (2001) Measurement of 2J(H,C)- and 3J(H,C)-coupling constants by alpha/beta selective HC(C)H-TOCSY. J Biomol NMR 21, 117–126.

    PubMed  CAS  Google Scholar 

  49. Schwalbe, H., Marino, J. P., Glaser, S. J., et al. (1995) Measurement of H,H-Coupling Constants Associated with nu1, nu2, and nu3 in Uniformly 13C-Labeled RNA by HCC-TOCSY-CCH-E.COSY J Am Chem Soc 117, 7251–7252.

    CAS  Google Scholar 

  50. Schwalbe, H., Marino, J. P., King, G. C., et al. (1994) Determination of a complete set of coupling constants in 13C-labeled oligonu-cleotides. J Biomol NMR 4, 631–644.

    PubMed  CAS  Google Scholar 

  51. Hines, J. V., Varani, G., Landry, S. M., et al. (1993) The stereospecific assignment of H5′ and H5″ in RNA using the sign of two-bond carbon-proton scalar coupling. J Am Chem Soc 115, 11002–11003.

    CAS  Google Scholar 

  52. Trantirek, L., Stefl, R., Masse, J. E., et al. (2002) Determination of the glycosidic torsion angles in uniformly C-13-labeled nucleic acids from vicinal coupling constants (3)J(C2/4-H1′) and (3)J(C6/8-H1′). J Biomol NMR 23, 1–12.

    PubMed  CAS  Google Scholar 

  53. Carlomagno, T., Hennig, M., Williamson, J. R. (2002) A novel PH-cT-COSY methodology for measuring JPH coupling constants in unlabeled nucleic acids. application to HIV-2 TAR RNA. J Biomol NMR 22, 65–81.

    PubMed  CAS  Google Scholar 

  54. Sklenar, V., Miyashiro, H., Zon, G., et al. (1986) Assignment of the 31P and 1H resonances in oligonucleotides by two-dimensional NMR spectroscopy. FEBS Lett 208, 94–98.

    PubMed  CAS  Google Scholar 

  55. Schwalbe, H., Samstag, W., Engels, J. W., et al. (1993) Determination of 3J(C,P) and 3J(H,P) coupling constants in nucleotide oligomers with FIDS-HSQC. J Biomol NMR 3, 479–486.

    CAS  Google Scholar 

  56. Hoogstraten, C. G., Pardi, A. (1998) Measurement of carbon-phosphorus J coupling constants in RNA using spin-echo difference constant-time HCCH-COSY. J Magn Reson 133, 236–240.

    PubMed  CAS  Google Scholar 

  57. Legault, P., Jucker, F. M., Pardi, A. (1995) Improved measurement of 13C, 31P J coupling constants in isotopically labeled RNA. FEBS Lett 362, 156–160.

    PubMed  CAS  Google Scholar 

  58. Szyperski, T., Fernandez, C., Ono, A., et al. (1999) The 2D [31P] spin-echo-difference constant-time [13C, 1H]-HMQC experiment for simultaneous determination of 3J(H3′P) and 3J(C4′P) in 13C-labeled nucleic acids and their protein complexes. J Magn Reson 140, 491–494.

    PubMed  CAS  Google Scholar 

  59. Hu, W., Bouaziz, S., Skripkin, E., et al. (1999) Determination of 3J(H3i, Pi+1) and 3J(H5i/5i, Pi) coupling constants in 13C-labeled nucleic acids using constant-time HMQC. J Magn Reson 139, 181–185.

    PubMed  CAS  Google Scholar 

  60. Clore, G. M., Murphy, E. C., Gronenborn, A. M., et al. (1998) Determination of three-bond 1H3′-31P couplings in nucleic acids and protein-nucleic acid complexes by quantitative J correlation spectroscopy. J Magn Reson 134, 164–167.

    PubMed  CAS  Google Scholar 

  61. Gotfredsen, C. H., Meissner, A., Duus, J. O., et al. (2000) New methods for measuring 1H-31P coupling constants in nucleic acids. Magn Reson Chem 38, 692–695.

    CAS  Google Scholar 

  62. Richter, C., Reif, B., Wor ner, K., et al. (1998) A new experiment for the measurement of nJ(C,P) coupling constants including 3J(C4′i,Pi) and 3J(C4′i,Pi+1) in oligonucle-otides. J Biomol NMR 12, 223–230.

    PubMed  CAS  Google Scholar 

  63. Legault, P., Pardi, A. (1994) 31P chemical shift as a probe of structural motifs in RNA. J Magn Reson B 103, 82–86.

    PubMed  CAS  Google Scholar 

  64. Richter, C., Reif, B., Griesinger, C., et al. (2000) NMR spectroscopic determination of angles and in RNA from CH-dipolar coupling, P-CSA cross-correlated relaxation. J Am Chem Soc 122, 12728– 12731.

    CAS  Google Scholar 

  65. Duchardt, E., Richter, C., Ohlenschlager, O., et al. (2004) Determination of the glycosidic bond angle chi in RNA from cross-correlated relaxation of CH dipolar coupling and N chemical shift anisotropy. J Am Chem Soc 126, 1962–1970.

    PubMed  CAS  Google Scholar 

  66. Ravindranathan, S., Kim, C. H., Bod-enhausen, G. (2003) Cross correlations between 13C-1H dipolar interactions and 15N chemical shift anisotropy in nucleic acids. J Biomol NMR 27, 365–375.

    PubMed  CAS  Google Scholar 

  67. Felli, I. C., Richter, C., Griesinger, C., et al. (1999) Determination of RNA sugar pucker mode from cross-correlated relaxation in solution NMR spectroscopy. J Am Chem Soc 121, 1956–1957.

    CAS  Google Scholar 

  68. Richter, C., Griesinger, C., Felli, I., et al. (1999) Determination of sugar conformation in large RNA oligonucleotides from analysis of dipole-dipole cross correlated relaxation by solution NMR spectroscopy. J Biomol NMR 15, 241–250.

    PubMed  CAS  Google Scholar 

  69. Andersson, P., Weigelt, J., Otting, G. (1998) Spin-state selection filters for the measurement of heteronuclear one-bond coupling constants. J Biomol NMR 12, 435–441.

    PubMed  CAS  Google Scholar 

  70. Tjandra, N., Bax, A. (1997) Measurement of dipolar contributions to 1JCH splittings from magnetic-field dependence of J modulation in two-dimensional NMR spectra. J Magn Reson 124, 512–515.

    PubMed  CAS  Google Scholar 

  71. Tjandra, N., Grzesiek, S., Bax, A. (1996) Magnetic field dependence of nitrogen-proton J splittings in N-15-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J Am Chem Soc 118, 6264–6272.

    CAS  Google Scholar 

  72. Hennig, M., Carlomagno, T., Williamson, J. R. (2001) Residual dipolar coupling TOCSY for direct through space correlations of base protons and phosphorus nuclei in RNA. J Am Chem Soc 123, 3395–3396.

    PubMed  CAS  Google Scholar 

  73. Wu, Z., Tjandra, N., Bax, A. (2001) Measurement of 1H3′-31P dipolar couplings in a DNA oligonucleotide by constant-time NOESY difference spectroscopy. J Biomol NMR 19, 367–370.

    PubMed  CAS  Google Scholar 

  74. Wu, Z., Tjandra, N., Bax, A. (2001) 31P chemical shift anisotropy as an aid in determining nucleic acid structure in liquid crystals. J Am Chem Soc 123, 3617–3618.

    PubMed  CAS  Google Scholar 

  75. Dingley, A. J., Masse, J. E., Feigon, J., et al. (2000) Characterization of the hydrogen bond network in guanosine quartets by internucleotide 3hJ(NC)′ and 2hJ(NN) scalar couplings. J Biomol NMR 16, 279–289.

    PubMed  CAS  Google Scholar 

  76. Dingley, A. J., Masse, J. E., Peterson, R. D., et al. (1999) Internucleotide scalar couplings across hydrogen bonds in Watson-Crickand Hoogsteen base pairs of a DNA triplex. J Am Chem Soc 121, 6019–6027.

    CAS  Google Scholar 

  77. Hennig, M., Williamson, J. R. (2000) Detection of N-H…N hydrogen bonding in RNA via scalar couplings in the absence of observable imino proton resonances. Nucleic Acids Res 28, 1585–1593.

    PubMed  CAS  Google Scholar 

  78. Liu, A. Z., Majumdar, A., Hu, W. D., et al. (2000) NMR detection of N-H…O=C hydrogen bonds in C-13,N-15-labeled nucleic acids. J Am Chem Soc 122, 3206–3210.

    CAS  Google Scholar 

  79. Majumdar, A., Kettani, A., Skripkin, E. (1999) Observation and measurement of internucleotide 2JNN coupling constants between 15N nuclei with widely separated chemical shifts. J Biomol NMR 14, 67–70.

    PubMed  CAS  Google Scholar 

  80. Majumdar, A., Kettani, A., Skripkin, E., et al. (1999) Observation of internucleotide NH…N hydrogen bonds in the absence of directly detectable protons. J Biomol NMR 15, 207–211.

    PubMed  CAS  Google Scholar 

  81. Wohnert, J., Ramachandran, R., Gorlach, M., et al. (1999) Triple-resonance experiments for correlation of H5 and exchangeable pyrimidine base hydrogens in (13)C,(15) N-labeled RNA. J Magn Reson 139, 430–433.

    PubMed  CAS  Google Scholar 

  82. Sklenar, V., Peterson, R. D., Rejante, M. R., et al. (1994) Correlation of nucleotide base and sugar protons in a N-15-labeled Hiv-1 RNA oligonucleotide by H-1-N-15 Hsqc experiments. J Biomol NMR 4, 117–122.

    PubMed  CAS  Google Scholar 

  83. Fohrer, J., Hennig, M., Carlomagno, T. (2006) Influence of the 2′-hydroxyl group conformation on the stability of A-form helices in RNA. J Mol Biol 356, 280–287.

    PubMed  CAS  Google Scholar 

  84. Hennig, M., Fohrer, J., Carlomagno, T. (2005) Assignment and NOE analysis of 2′-hydroxyl protons in RNA: implications for stabilization of RNA A-form duplexes. J Am Chem Soc 127, 2028–2029.

    PubMed  CAS  Google Scholar 

  85. Giedroc, D. P., Cornish, P. V., Hennig, M. (2003) Detection of scalar couplings involving 2′-hydroxyl protons across hydrogen bonds in a frameshifting mRNA pseudoknot. J Am Chem Soc 125, 4676–4677.

    PubMed  CAS  Google Scholar 

  86. Simorre, J. P., Zimmermann, G. R., Mueller, L., et al. (1996) Correlation of the guano-sine exchangeable and nonexchangeable base protons in 13C-/15N-labeled RNA with an HNC-TOCSY-CH experiment. J Biomol NMR 7, 153–156.

    PubMed  CAS  Google Scholar 

  87. Simorre, J. P., Zimmermann, G. R., Mueller, L., et al. (1996) Triple-resonance experiments for assignment of adenine base resonances in C-13/N-15-labeled RNA. J Am Chem Soc 118, 5316–5317.

    CAS  Google Scholar 

  88. Simorre, J. P., Zimmermann, G. R., Pardi, A., et al. (1995) Triple resonance HNCCCH experiments for correlating exchangeable and nonexchangeable cyti-dine and uridine base protons in RNA. J Biomol NMR 6, 427–432.

    PubMed  CAS  Google Scholar 

  89. Sklenar, V., Dieckmann, T., Butcher, S. E., et al. (1996) Through-bond correlation of imino and aromatic resonances in C-13-,N-15-labeled RNA via heteronuclear TOCSY. J Biomol Nmr 7, 83–87.

    PubMed  CAS  Google Scholar 

  90. Wohnert, J., Gorlach, M., Schwalbe, H. (2003) Triple resonance experiments for the simultaneous correlation of H6/H5 and exchangeable protons of pyrimidine nucleotides in C-13, N-15-labeled RNA applicable to larger RNA molecules. J Biomol Nmr 26, 79–83.

    PubMed  Google Scholar 

  91. Fiala, R., Jiang, F., Patel, D. J. (1996) Direct correlation of exchangeable and non-exchangeable protons on purine bases in 13C,15N-labeled RNA using a HCCNH-TOCSY experiment. J Am Chem Soc 118, 689–690.

    CAS  Google Scholar 

  92. Simon, B., Zanier, K., Sattler, M. (2001) A TROSY relayed HCCH-COSY experiment for correlating adenine H2/H8 resonances in uniformly 13C-labeled RNA molecules. J Biomol NMR 20, 173–176.

    PubMed  CAS  Google Scholar 

  93. Legault, P., Farmer, B. T., Mueller, L., et al. (1994) Through-bond correlation of ade-nine protons in a C-13-labeled ribozyme. J Am Chem Soc 116, 2203–2204.

    CAS  Google Scholar 

  94. Marino, J. P., Prestegard, J. H., Crothers, D. M. (1994) Correlation of adenine H2/H8 resonances in uniformly C-13 labeled Rnas by 2d Hcch-Tocsy: a new tool for H-1 assignment. J Am Chem Soc 116, 2205–2206.

    CAS  Google Scholar 

  95. Marino, J. P., Diener, J. L., Moore, P. B., et al. (1997) Multiple-quantum coherence dramatically enhances the sensitivity of CH and CH2 correlations in uniformly 13C-labeled RNA. J Am Chem Soc 119, 7361–7366.

    CAS  Google Scholar 

  96. Sklenar, V., Dieckmann, T., Butcher, S. E., et al. (1998) Optimization of triple-resonance HCN experiments for application to larger RNA oligonucleotides. J Magn Reson 130, 119–124.

    PubMed  CAS  Google Scholar 

  97. Fiala, R., Czernek, J., Sklenar, V. (2000) Transverse relaxation optimized triple-resonance NMR experiments for nucleic acids. J Biomol NMR 16, 291–302.

    PubMed  CAS  Google Scholar 

  98. Riek, R., Pervushin, K., Fernandez, C., et al. (2001) [(13)C,(13)C]- and [(13)C,(1)H]-TROSY in a triple resonance experiment for ribose-base and intrabase correlations in nucleic acids. J Am Chem Soc 123, 658–664.

    PubMed  CAS  Google Scholar 

  99. Farmer, B. T., Muller, L., Nikonowicz, E. P., et al. (1993) Unambiguous resonance assignments in carbon-13, nitrogen-15-labeled nucleic acids by 3D triple-resonance NMR. J Am Chem Soc 115, 11040– 11041.

    CAS  Google Scholar 

  100. Sklenar, V., Rejante, M. R., Peterson, R. D., et al. (1993) Two-dimensional triple-resonance HCNCH experiment for direct correlation of ribose H1′ and base H8, H6 protons in 13C,15N-labeled RNA oligo-nucleotides. J Am Chem Soc 115, 12181– 12182.

    CAS  Google Scholar 

  101. Fesik, S. W., Eaton, H. L., Olejniczak, E. T., et al. (1990) 2D and 3D NMR spectroscopy employing carbon-13/carbon-13 magnetization transfer by isotropic mixing. Spin system identification in large proteins. J Am Chem Soc 112, 886–888.

    CAS  Google Scholar 

  102. Kay, L. E., Ikura, M., Bax, A. (1990) Proton-proton correlation via carbon-carbon couplings: a three-dimensional NMR approach for the assignment of aliphatic resonances in proteins labeled with carbon-13. J Am Chem Soc 112, 888–889.

    CAS  Google Scholar 

  103. Pardi, A. (1995) Multidimensional heteronuclear NMR experiments for structure determination of isotopically labeled RNA. Methods Enzymol 261, 350–380.

    PubMed  CAS  Google Scholar 

  104. Pardi, A., Nikonowicz, E. P. (1992) Simple procedure for resonance assignment of the sugar protons in carbon-13 labeled RNAs. J Am Chem Soc 114, 9202–9203.

    CAS  Google Scholar 

  105. Hu, W., Kakalis, L. T., Jiang, L., et al. (1998) 3D HCCH-COSY-TOCSY experiment for the assignment of ribose and amino acid side chains in 13C labeled RNA and protein. J Biomol NMR 12, 559–564.

    PubMed  CAS  Google Scholar 

  106. Glaser, S. J., Schwalbe, H., Marino, J. P., et al. (1996) Directed TOCSY, a method for selection of directed correlations by optimal combinations of isotropic and longitudinal mixing. J Magn Reson B 112, 160–180.

    PubMed  CAS  Google Scholar 

  107. Kellogg, G. W. (1992) Proton-detected hetero-TOCSY experiments with application to nucleic acids. J Magn Reson 98, 176–182.

    CAS  Google Scholar 

  108. Kellogg, G. W., Szewczak, A. A., Moore, P. B. (1992) Two-dimensional hetero-TOCSY-NOESY. Correlation of phosphorus-31 resonances with anomeric and aromatic proton resonances in RNA. J Am Chem Soc 114, 2727–2728.

    CAS  Google Scholar 

  109. Kellogg, G. W., Schweitzer, B. I. (1993) Two- and three-dimensional 31P-driven NMR procedures for complete assignment of backbone resonances in oligodeoxyribo-nucleotides. J Biomol NMR 3, 577–595.

    PubMed  CAS  Google Scholar 

  110. Heus, H. A., Wijmenga, S. S., Vandeven, F. J. M., et al. (1994) Sequential backbone assignment in C-13-labeled Rna via through-bond coherence transfer using 3-dimensional triple-resonance spectroscopy (H-1, C-13, P-31) and 2-dimensional hetero Tocsy. J Am Chem Soc 116, 4983–4984.

    CAS  Google Scholar 

  111. Marino, J. P., Schwalbe, H., Anklin, C., et al. (1994) A 3-dimensional triple-resonance H-1,C-13,P-31 experiment: sequential through-bond correlation of ribose protons and intervening phosphorus along the Rna oligonucleotide backbone. J Am Chem Soc 116, 6472–6473.

    CAS  Google Scholar 

  112. Marino, J. P., Schwalbe, H., Anklin, C., et al. (1995) Sequential correlation of anomeric ribose protons and intervening phosphorus in RNA oligonucleotides by a 1H, 13C, 31P triple resonance experiment: HCP-CCH-TOCSY. J Biomol NMR 5, 87–92.

    PubMed  CAS  Google Scholar 

  113. Wijmenga, S. S., Heus, H. A., Leeuw, H. A., et al. (1995) Sequential backbone assignment of uniformly 13C-labeled RNAs by a two-dimensional P(CC)H-TOCSY triple resonance NMR experiment. J Biomol NMR 5, 82–86.

    PubMed  CAS  Google Scholar 

  114. Marino, J. P., Schwalbe, H., Griesinger, C. (1999) J-coupling restraints in RNA structure determination. Acc Chem Res 32, 614–623.

    CAS  Google Scholar 

  115. Schwieters, C. D., Kuszewski, J. J., Tjandra, N., et al. (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160, 65–73.

    PubMed  CAS  Google Scholar 

  116. Brunger, A. T., Adams, P. D., Clore, G. M., et al. (1998) Crystallography & NMR system: A new software suite for macro-molecular structure determination. Acta Crystallographica Section D-Biological Crystallography 54, 905–921.

    CAS  Google Scholar 

  117. Stein, E. G., Rice, L. M., Brunger, A. T. (1997) Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J Magn Reson 124, 154–164.

    PubMed  CAS  Google Scholar 

  118. Pearlman, D. A., Case, D. A., Caldwell, J. W., et al. (1995) AMBER, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules. Computer Physics Communications 91, 1–41.

    CAS  Google Scholar 

  119. Tsui, V., Case, D. A. (2000) Molecular dynamics simulations of nucleic acids with a generalized born solvation model. J Am Chem Soc 122, 2489–2498.

    CAS  Google Scholar 

  120. Clore, G. M., Garrett, D. S. (1999) R-factor, free R, and complete cross-validation for dipolar coupling refinement of NMR structures. J Am Chem Soc 121, 9008–9012.

    CAS  Google Scholar 

  121. Clore, G. M., Kuszewski, J. (2003) Improving the accuracy of NMR structures of RNA by means of conformational database potentials of mean force as assessed by complete dipolar coupling cross-validation. J Am Chem Soc 125, 1518–1525.

    PubMed  CAS  Google Scholar 

  122. Cromsigt, J. A., Hilbers, C. W., Wijmenga, S. S. (2001) Prediction of proton chemical shifts in RNA. Their use in structure refinement and validation. J Biomol NMR 21, 11–29.

    PubMed  CAS  Google Scholar 

  123. Baklanov, M. M., Golikova, L. N., Malygin, E. G. (1996) Effect on DNA transcription of nucleotide sequences upstream to T7 promoter. Nucleic Acids Res 24, 3659–3660.

    PubMed  CAS  Google Scholar 

  124. Moran, S., Ren, R. X., Sheils, C. J., et al. (1996) Non-hydrogen bonding ‘terminator’ nucleosides increase the 3′-end homogeneity of enzymatic RNA and DNA synthesis. Nucleic Acids Res 24, 2044–2052.

    PubMed  CAS  Google Scholar 

  125. Ferre-D'Amare, A. R., Doudna, J. A. (1996) Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24, 977–978.

    PubMed  Google Scholar 

  126. Price, S. R., Ito, N., Oubridge, C., et al. (1995) Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol 249, 398–408.

    PubMed  CAS  Google Scholar 

  127. Scott, L. G., Tolbert, T. J., Williamson, J. R. (2000) Preparation of specifically 2H- and 13C-labeled ribonucleotides. Methods Enzymol 317, 18–38.

    PubMed  CAS  Google Scholar 

  128. Sklenar, V., Brooks, B. R., Zon, G., et al. (1987) Absorption mode two-dimensional NOE spectroscopy of exchangeable protons in oligonucleotides. FEBS Lett 216, 249–252.

    PubMed  CAS  Google Scholar 

  129. Rance, M., Sorensen, O. W., Bodenhausen, G., et al. (1983) Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun 117, 479–485.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank S. Daudenarde and G. Pérez-Alvarado for invaluable discussions. This work was supported by the National Institutes of Health (AI040187 and GM66669, to M.H.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Scott, L.G., Hennig, M. (2008). RNA Structure Determination by NMR. In: Keith, J.M. (eds) Bioinformatics. Methods in Molecular Biology™, vol 452. Humana Press. https://doi.org/10.1007/978-1-60327-159-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-159-2_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-707-5

  • Online ISBN: 978-1-60327-159-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics