Skip to main content

Ceramide-Induced Transbilayer (Flip-Flop) Lipid Movement in Membranes

  • Protocol
  • First Online:
Lipid Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 462))

Abstract

Lipids in biological membranes are asymmetrically distributed across the bilayer. The choline-containing lipids, phosphatidylcholine (PtdCho) and sphingomyelin (SM), are more abundant in the external leaflet. In contrast, the amino-containing glycerophospholipids, phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEth), are located preferentially on the cytoplasmic leaflet. The maintenance of transbilayer lipid asymmetry is essential for normal membrane function, and disruption of this asymmetry is associated with cell activation or pathological condition. The physiological role of ceramide formation in response to cell stimulation remains controversial. Ceramide formation serves many different functions at various locations in the cell. Despite the limited capacity for spontaneous intracellular diffusion or membrane flip-flop of lipids in membranes, we have found that ceramide production, via sphingomyelinase action or addition of external ceramide, induces the transbilayer lipid motion of the lipids within the cellular membrane. This chapter outlines various commonly used assays for measuring lipid flip-flop induced by ceramide in cell and model membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kornberg RD, McConnell HM. Lateral diffusion of phospholipids in a vesicle membrane. Proc Natl Acad Sci USA 1971;68:2564–8.

    Article  PubMed  CAS  Google Scholar 

  2. Connor J, Schroit AJ. Determination of lipid asymmetry in human red cells by resonance energy transfer. Biochemistry 1987;26:5099–105.

    Article  PubMed  CAS  Google Scholar 

  3. Zachowski A, Herrmann A, Paraf A, Devaux PF. Phospholipid outside-inside translocation in lymphocyte plasma membranes is a protein-mediated phenomenon. Biochim Biophys Acta 1987;897:197–200.

    Article  PubMed  CAS  Google Scholar 

  4. Van Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, Borst P, van Meer G. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 1996;87:507–17.

    Article  PubMed  Google Scholar 

  5. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denefle P, Assmann G. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 1999;22:352–5.

    Article  PubMed  CAS  Google Scholar 

  6. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Genest J, Jr., Hayden MR. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999;22:336–45.

    Article  PubMed  CAS  Google Scholar 

  7. Sims PJ, Wiedmer T. Unraveling the mysteries of phospholipid scrambling. Thromb Haemost 2001;86:266–75.

    PubMed  CAS  Google Scholar 

  8. Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 1998;5:551–62.

    Article  PubMed  CAS  Google Scholar 

  9. Connor J, Pak CC, Schroit AJ. Exposure of phosphatidylserine in the outer leaflet of human red blood cells. Relationship to cell density, cell age, and clearance by mononuclear cells. J Biol Chem 1994;269:2399–404.

    PubMed  CAS  Google Scholar 

  10. Hannun YA, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol 2000;10:73–80.

    Article  PubMed  CAS  Google Scholar 

  11. Levade T, Jaffrezou JP. Signalling sphingomyelinases: Which, where, how and why? Biochim Biophys Acta 1999;438:1–17.

    Google Scholar 

  12. Perry DK. Ceramide and apoptosis. Biochem Soc Trans 2000;27:399–404.

    Google Scholar 

  13. Goñi FM, Alonso A. Sphingomyelinases: Enzymology and membrane activity. FEBS Lett 2002;531:38–46.

    Article  PubMed  Google Scholar 

  14. Spiegel S, Foster D, Kolesnick R. Signal transduction through lipid second messengers. Curr Opin Cell Biol 1996;8:159–67.

    Article  PubMed  CAS  Google Scholar 

  15. Kolesnick RN, Kronke M. Regulation of ceramide production and apoptosis. Ann Rev Physiol 1998;60:643–5.

    Article  CAS  Google Scholar 

  16. Dobrowsky RT, Hannun YA. Ceramide stimulates a cytosolic protein phosphatase. J Biol Chem 1992;267:5048–51.

    PubMed  CAS  Google Scholar 

  17. Zhang Y, Yao B, Delikat S, Bayoumy S, Lin XH, Basu S, McGinley M, Chan-Hui PY, Lichenstein H, Kolesnick R. Kinase suppressor of ras is ceramide-activated protein kinase. Cell 1997;89:63–72.

    Article  PubMed  CAS  Google Scholar 

  18. Lee JY, Hannun YA, Obeid LM. Ceramide inactivates cellular protein kinase C alpha. J Biol Chem 1996;271:13169–74.

    Article  PubMed  CAS  Google Scholar 

  19. Veiga MP, Arrondo JL, Goni FM, Alonso A. Ceramides in phospholipid membranes: Effects on bilayer stability and transition to nonlamellar phases. Biophys J 1999;76:342–50.

    Article  PubMed  CAS  Google Scholar 

  20. Montes LR, Ruiz-Argüello MB, Goñi FM, Alonso A. Membrane restructuring via ceramide results in enhanced solute efflux. J Biol Chem 2002;277:11788–94.

    Article  PubMed  CAS  Google Scholar 

  21. Siskind LJ, Colombini M. The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis. J Biol Chem 2000;275:38640–4.

    Article  PubMed  CAS  Google Scholar 

  22. Basañez G, Ruiz-Argüello MB, Alonso A, Goñi FM, Karlsson G, Edwards K. Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: A cryo-transmission electron microscopy study of liposome fusion. Biophys J 1997;72:2630–7.

    Article  PubMed  Google Scholar 

  23. Ruiz-Argüello MB, Basañez G, Goñi FM, Alonso A. Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J Biol Chem 1996;271:26616–21.

    Article  PubMed  Google Scholar 

  24. Holopainen JM, Angelova MI, Kinnunen PKJ. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramides in giant liposomes. Biophys J 2000;78:830–8.

    Article  PubMed  CAS  Google Scholar 

  25. Bollinger CR, Teichgraber V, Gulbins E. Ceramide-enriched membrane domains. Biochim Biophys Acta 2005;1746:284–94.

    Article  PubMed  CAS  Google Scholar 

  26. Gulbins E, Li PL. Physiological and pathophysiological aspect of ceramide. Am J Physiol Regul Integr Comp Physiol 2006;290:R11–R26.

    Article  PubMed  CAS  Google Scholar 

  27. Lopez-Montero I, Rodríguez N, Cribier S, Pohl A, Velez M, Devaux PF. Rapid transbilayer movement of ceramides in phospholipid vesicles and in human erythrocytes. J Biol Chem 2005;280:25811–9.

    Article  PubMed  CAS  Google Scholar 

  28. Contreras FX, Villar AV, Alonso A, Kolesnick RN, Goñi FM. Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. J Biol Chem 2003;278:37169–74.

    Article  PubMed  CAS  Google Scholar 

  29. Contreras FX, Basanez G, Alonso A, Herrmann A, Goñi FM. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes. Biophys J 2005;88:348–59.

    Article  PubMed  CAS  Google Scholar 

  30. Müller P, Schiller S, Wieprecht T, Dathe M, Herrmann A. Continuous measurement of rapid transbilayer movement of a pyrene-labeled phospholipid analogue. Chem Phys Lipids 2000;106:89–99.

    Article  PubMed  Google Scholar 

  31. Mayer LD, Hope MH, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 1986;858:161–8.

    Article  PubMed  CAS  Google Scholar 

  32. Bottcher GJF, Van Gent CM, Pries C. A rapid and sensitive submicro phosphorus determination. Anal Chim Acta 1961;24:203–4.

    Article  CAS  Google Scholar 

  33. Wybenga LE, Epand RF, Nir S, Chu JWK, Sharom FJ, Flanagan TD, Epand RM. Glycophorin as a receptor for Sendai virus. Biochemistry 1996;35:9513–9.

    Article  PubMed  CAS  Google Scholar 

  34. Steck TL, Kant JA. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol 1974;31:172–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix M. Goñi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Contreras, FX., Villar, AV., Alonso, A., Goñi, F.M. (2009). Ceramide-Induced Transbilayer (Flip-Flop) Lipid Movement in Membranes. In: Larijani, B., Woscholski, R., Rosser, C. (eds) Lipid Signaling Protocols. Methods in Molecular Biology, vol 462. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-115-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-115-8_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-727-3

  • Online ISBN: 978-1-60327-115-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics