Skip to main content

Cell Death in Myoblasts and Muscles

  • Protocol
  • First Online:
Apoptosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 559))

Summary

One of the hallmarks of development is that many more cells are produced than are ultimately needed for organogenesis. In the case of striated skeletal muscle, large numbers of myoblasts are generated in the somites and then migrate to take up residence in the limbs and the trunk. A subset of these cells fuses to form multinucleated skeletal muscle fibers, while a second group, known as satellite cells, exits the cell cycle and persists as a pool of lineage-restricted stem cells that can repair damaged muscle. The remaining cells initiate apoptosis and are rapidly lost. Primary myoblasts and established satellite cell lines are powerful tools for dissecting the regulatory events that mediate differentiative decisions and have proven to be important models. As well, muscle diseases represent debilitating and often fatal disorders. This chapter provides a general background for muscle development and then details a variety of assays for monitoring the differentiation and the death of muscle. While some of these methods are specialized to address the phenotypic properties of skeletal muscle, others can be employed with a wide variety of cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehrhardt, J., Brimah, K., Adkin, C., Partridge, T., and Morgan, J. (2007). Human muscle precursor cells give rise to functional satellite cells in vivo. Neuromuscul. Disord. 17, 631–638.

    Article  PubMed  Google Scholar 

  2. Peault, B., Rudnicki, M., Torrente, Y., Cossu, G., Tremblay, J. P., Partridge, T., Gussoni, E., Kunkel, L. M., and Huard, J. (2007). Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. 15, 867–877.

    Article  PubMed  CAS  Google Scholar 

  3. McDowell, H. P. (2003). Update on childhood rhabdomyosarcoma. Arch. Dis. Child. 88, 354–357.

    Article  PubMed  CAS  Google Scholar 

  4. Raff, M. C. (1992) Social controls on cell survival and cell death. Nature 356, 397–400.

    Article  PubMed  CAS  Google Scholar 

  5. Yaffe, D., and Saxel, O. (1977). A myogenic cell line with altered serum requirements for differentiation. Differentiation 7, 159–166.

    Article  PubMed  CAS  Google Scholar 

  6. McArdle, A., Maglara, A., Appleton, P., Watson, A. J., Grierson, I., and Jackson, M. J. (1999). Apoptosis in multinucleated skeletal muscle myotubes. Lab. Invest. 79, 1069–1076.

    PubMed  CAS  Google Scholar 

  7. Wernig, A., Irintchev, A., Hartling, A. et alet al. (1991). Formation of new muscle fibres and tumours after injection of cultured myogenic cells. J. Neurocytol. 20, 982–997.

    Article  PubMed  CAS  Google Scholar 

  8. Kitzmann, M., Carnac, G., Vandromme, M., Primig, M., Lamb, N. J., and Fernandez, A. (1998). The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J. Cell Biol. 142, 1447–1459.

    Article  PubMed  CAS  Google Scholar 

  9. Lindon, C., Montarras, D., and Pinset, C. (1998). Cell cycle-regulated expression of the muscle determination factor Myf-5 in proliferating myoblasts. J. Cell Biol. 140, 111–118.

    Article  PubMed  CAS  Google Scholar 

  10. 10 Shen, X., Collier, J. M., Hlaing, M., Zhang, L., Delshad, E. H., Bristow, J., and Bernstein, H. S. (2003). Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev. Dyn. 226, 128–138.

    Article  PubMed  CAS  Google Scholar 

  11. Jiang, B. H., Aoki, M., Zheng, J. Z., Li, J., and Vogt, P. K. (2003). Myogenic signaling of phosphatidylinositol 3kinase requires the serinethreonine kinase Akt/protein kinase B. Proc. Natl Acad. Sci. USA 96, 2077–2081.

    Article  Google Scholar 

  12. 12 Wang, X., Blagden, C., Fan, J., Nowak, S. J., Taniuchi, I., Littman, D. R., and Burden, S. J. (2005). Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle. Genes Dev. 19, 1715–1722.

    Article  PubMed  CAS  Google Scholar 

  13. Mizushima, N. (2007). Autophagy: process and function. Genes Dev. 21, 2861–2873.

    Article  PubMed  CAS  Google Scholar 

  14. Dominov, J. A., Dunn, J. J., and Miller, J. B. (1998). Bcl-2 expression identifies an early stage of myogenesis and promotes clonal expansion of muscle cells. J. Cell Biol. 142, 537–544.

    Article  PubMed  CAS  Google Scholar 

  15. Hu, Y., Cascone, P. J., Cheng, L., Sun, D., Nambu, J. R., and Schwartz, L. M. (1999). Lepidopteran DALP, and its mammalian ortholog HIC-5, function as negative regulators of muscle differentiation. Proc. Natl Acad. Sci. USA 96, 10218–10223.

    Article  PubMed  CAS  Google Scholar 

  16. Gao, Z. L., Deblis, R., Glenn, H., and Schwartz, L. M. (2007). Differential roles of HIC-5 isoforms in the regulation of cell death and myotube formation during myogenesis. Exp. Cell Res. 313, 4000–4014.

    Article  PubMed  CAS  Google Scholar 

  17. O’Flaherty, J., Mei, Y., Freer, M., and Weyman, C. M. (2006). Signaling through the TRAIL receptor DR5/FADD pathway plays a role in the apoptosis associated with skeletal myoblast differentiation. Apoptosis 11, 2103–2113.

    Article  PubMed  Google Scholar 

  18. Arends, M. J., and Wyllie, A. H. (1991). Apoptosis: mechanisms and roles in pathology Int. Rev. Exp. Pathol. 32, 223–254.

    PubMed  CAS  Google Scholar 

  19. Sahu, S. K., Gummadi, S. N., Manoj, N., Aradhyam, G. K. (2007). Phospholipid scramblases: an overview. Arch. Biochem. Biophys. 462, 103–114.

    Article  PubMed  CAS  Google Scholar 

  20. Fadok, V. A., Bratton, D. L., Rose, D. M., Pearson, A., Ezekewitz, R. A. B., and Henson, P. M. (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90.

    Article  PubMed  CAS  Google Scholar 

  21. van den Eijnde, S. M., van den Hoff, M. J., Reutelingsperger, C. P., van Heerde, W. L., Henfling, M. E., Vermeij-Keers, C., Schutte, B., Borgers, M., Ramaekers, F. C. (2001). Transient expression of phosphatidylserine at cell–cell contact areas is required for myotube formation. J. Cell Sci. 114, 3631–3642.

    PubMed  CAS  Google Scholar 

  22. Gullberg, D., Tiger, C. F., and Velling, T. (1999). Laminins during muscle development and in muscular dystrophies. Cell. Mol. Life Sci. 56, 442–460.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jacques Tremblay for sharing his protocols for primary myoblast isolation. We are also very grateful to Helen Blau (Stanford University) for all the resources and protocols she makes available on her laboratory Web site (http://www.stanford.edu/group/blau/reagents.htmL). This work was supported by grants from the NIH, the Collaborative Biomedical Research Program, and the Center of Excellence in Apoptosis Research (CEAR) to LMS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schwartz, L.M., Gao, Z., Brown, C., Parelkar, S.S., Glenn, H. (2009). Cell Death in Myoblasts and Muscles. In: Erhardt, P., Toth, A. (eds) Apoptosis. Methods in Molecular Biology, vol 559. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-017-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-017-5_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-016-8

  • Online ISBN: 978-1-60327-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics