Skip to main content

Static and Kinetic Site-Specific Protein-DNA Photocrosslinking: Analysis of Bacterial Transcription Initiation Complexes

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 543))

Summary

Static site-specific protein–DNA photocrosslinking permits identification of protein–DNA interactions within multiprotein–DNA complexes. Kinetic site-specific protein–DNA photocrosslinking – involving rapid-quench-flow mixing and pulsed-laser irradiation – permits elucidation of pathways and kinetics of formation of protein–DNA interactions within multiprotein–DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein–DNA photocrosslinking to bacterial transcription initiation complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lagrange, T., Kim, T.K., Orphanides, G., Ebright, Y., Ebright, R.H., and Reinberg, D. (1996). High-resolution mapping of nucleoprotein complexes by site-specific protein-DNA photocrosslinking: organization of the human TBP-TFIIA-TFIIB-DNA quaternary complex. Proc. Natl. Acad. Sci. U S A 93, 10620–10625.

    Article  PubMed  CAS  Google Scholar 

  2. Kim, T.-K., Lagrange, T., Wang, Y.-H., Griffith, J., Reinberg, D., and Ebright, R.H. (1997). Trajectory of DNA in the RNA polymerase II transcription preinitiation complex. Proc. Natl. Acad. Sci. U S A 94, 12268–12273.

    Article  PubMed  CAS  Google Scholar 

  3. Lagrange, T., Kapanidis, A., Tang, H., Reinberg, D., and Ebright, R.H. (1998). New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev. 12, 34–44.

    Article  PubMed  CAS  Google Scholar 

  4. Kim, T.-K., Ebright, R.H., and Reinberg, D. (2000). Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288, 1418–1421.

    Article  PubMed  CAS  Google Scholar 

  5. Naryshkin, N., Revyakin, A., Kim, Y., Mekler, V., and Ebright, R.H. (2000). Structural organization  of the RNA polymerase-promoter open complex. Cell 101, 601–611.

    Article  PubMed  CAS  Google Scholar 

  6. Kim, T.-K., Lagrange, T., Naryshkin, N., Reinberg, D., and Ebright, R.H. (2000). Site-specific protein-DNA photocrosslinking. In Protein-DNA Interactions: A Practical Approach, Travers, A. and Buckle, M. eds. IRL, Oxford, pp. 319–335.

    Google Scholar 

  7. Fidanza, J., Ozaki, H., and McLaughlin, L. (1992). Site-specific labeling of DNA sequences containing phosphorothioate diesters. J. Am. Chem. Soc. 114, 5509–5517.

    Article  CAS  Google Scholar 

  8. Yang, S.-W. and Nash, H. (1994). Specific photocrosslinking of DNA-protein complexes: identification of contacts between integration host factor and its target DNA. Proc. Natl. Acad. Sci. U S A 91, 12183–12187.

    Article  PubMed  CAS  Google Scholar 

  9. Mayer, A. and Barany, F. (1995). Photoaffinity cross-linking of TaqI restriction endonuclease using an aryl azide linked to the phosphate backbone. Gene 153, 1–8.

    Article  PubMed  CAS  Google Scholar 

  10. Sambrook, J. and Russell, D. (2001). Molecular Cloning: A Laboratory. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  11. Wang, Y. and Stumph, W. (1998). Identification and topological arrangement of Drosophila proximal sequence element (PSE)-binding protein subunits that contact the PSEs of U1 and U6 small nuclear RNA genes. Mol. Cell. Biol. 18, 1570–1579.

    PubMed  CAS  Google Scholar 

  12. Bartlett, M., Thomm, M., and Geiduschek, E. (2000). The orientation of DNA in an archaeal transcription initiation complex. Nat. Struct. Biol. 7, 782–785.

    Article  PubMed  CAS  Google Scholar 

  13. Bartlett, M., Thomm, M., and Geiduschek, E. (2004). Topography of the euryarchaeal transcription initiation complex. J. Biol. Chem. 279, 5894–5903.

    Article  PubMed  CAS  Google Scholar 

  14. Renfrow, M., Naryshkin, N., Lewis, M., Chen, H.-T., Ebright, R.H., and Scott, R. (2004). Transcription factor B contacts promoter DNA near the transcription start site of the archaeal transcription initiation complex. J. Biol. Chem. 279, 2825–2831.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, B., Mandal, S., and Hampsey, M. (2004). High-resolution protein-DNA contacts for the yeast RNA polymerase II general transcription machinery. Biochemistry 43, 12741–12749.

    Article  PubMed  CAS  Google Scholar 

  16. Kim, Y., Geiger, J., Hahn, S., and Sigler, P. (1993). Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520.

    Article  PubMed  CAS  Google Scholar 

  17. Kim, J., Nikolov, D., and Burley, S. (1993). Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520–527.

    Article  PubMed  CAS  Google Scholar 

  18. Geiger, J., Hahn, S., Lee, S., and Sigler, P. (1996). Crystal structure of the yeast TFIIA/TBP/DNA complex. Science 272, 830–836.

    Article  PubMed  CAS  Google Scholar 

  19. Tan, S., Hunziker, Y., Sargent, D., and Richmond, T. (1996). Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381, 127–134.

    Article  PubMed  CAS  Google Scholar 

  20. Nikolov, D., Chen, H., Halay, E., Usheva, A., Hisatake, K., Lee, D.K., Roeder, R., and Burley, S. (1995). Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377, 119–128.

    Article  PubMed  CAS  Google Scholar 

  21. Bartholomew, B., Kassavetis, G., Braun, B., and Geiduschek, E.P. (1990). The subunit structure of Saccharomyces cerevisiae transcription factor IIIC probed with a novel photocrosslinking reagent. EMBO J. 9, 2197–2205.

    PubMed  CAS  Google Scholar 

  22. Bartholomew, B., Kassavetis, G. and Geiduschek, E.P. (1991). Two components of Saccharomyces cerevisiae transcription factor IIIB (TFIIIB) are stereospecifically located upstream of a tRNA gene and interact with the second-largest subunit of TFIIIC. Mol. Cell. Biol. 11, 5181–5189.

    PubMed  CAS  Google Scholar 

  23. Braun, B., Bartholomew, B., Kassavetis, G., and Geiduschek, E.P. (1992). Topography of transcription factor complexes on the Saccharomyces cerevisiae 5S RNA gene. J. Mol. Biol. 228, 1063–1077.

    Article  PubMed  CAS  Google Scholar 

  24. Kassavetis, G., Kumar, A., Ramirez, E., and Geiduschek, E.P. (1998). Functional and structural organization of Brf, the TFIIB-related component of the RNA polymerase III transcription initiation complex. Mol. Cell. Biol. 18, 5587–5599.

    PubMed  CAS  Google Scholar 

  25. Bell, S. and Stillman, B. (1992). ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128–134.

    Article  PubMed  CAS  Google Scholar 

  26. Coulombe, B., Li, J., and Greenblatt, J. (1994). Topological localization of the human transcription factors IIA, IIB, TATA box-binding protein, and RNA polymerase II-associated protein 30 on a class II promoter. J. Biol. Chem. 269, 19962–19967.

    PubMed  CAS  Google Scholar 

  27. Gong, X., Radebaugh, C., Geiss, G., Simon, S., and Paule, M. (1995). Site-directed photo-cross-linking of rRNA transcription initiation complexes. Mol. Cell. Biol. 15, 4956–4963.

    PubMed  CAS  Google Scholar 

  28. Pruss, D., Bartholomew, B., Persinger, J., Hayes, J., Arents, G., Moudrianakis, E., and Wolffe, A. (1996). An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres. Science 274, 614–617.

    Article  PubMed  CAS  Google Scholar 

  29. Robert, F., Forget, D., Li, J., Greenblatt, J., and Coulombe, B. (1996). Localization of subunits of transcription factors IIE and IIF immediately upstream of the transcriptional initiation site of the adenovirus major late promoter. J. Biol. Chem. 271, 8517–8520.

    Article  PubMed  CAS  Google Scholar 

  30. Forget, D., Robert, F., Grondin, G., Burton, Z., Greenblatt, J., and Coulombe, B. (1997). RAP74 induces promoter contacts by RNA polymerase II upstream and downstream of a DNA bend centered on the TATA box. Proc. Natl. Acad. Sci. U S A 94, 7150–7155.

    Article  PubMed  CAS  Google Scholar 

  31. Record, M.T., Reznikoff, W., Craig, M., McQuade, K., and Schlax, P. (1996). Escherichia coli RNA polymerase (Eσ70), promoters, and the kinetics of the steps of transcription initiation. In Escherichia coli and Salmonella, Vol. 1, Neidhart, F., ed. ASM, Washington, DC, pp. 792–820.

    Google Scholar 

  32. Ebright, R. (2000). RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J. Mol. Biol. 304, 687–698.

    Article  PubMed  CAS  Google Scholar 

  33. Severinov, K., Mustaev, A., Severinova, E., Bass, I., Kashlev, M., Landick, R., Nikiforov, V., Goldfarb, A., and Darst, S. (1995). Assembly of functional Escherichia coli RNA polymerase containing β subunit fragments. Proc. Natl. Acad. Sci. U S A 92, 4591–4595.

    Article  PubMed  CAS  Google Scholar 

  34. Severinov, K., Mustaev, A., Kukarin, A., Muzzin, O., Bass, I., Darst, S., and Goldfarb, A. (1996). Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the β and β′ subunits of Escherichia coli RNA polymerase. J. Biol. Chem. 271, 27969–27974.

    Article  PubMed  CAS  Google Scholar 

  35. Tang, H., Severinov, K., Goldfarb, A., and Ebright, R.H. (1995). Rapid RNA polymerase genetics: one-day, no-column preparation of reconstituted recombinant Escherichia coli RNA polymerase. Proc. Natl. Acad. Sci. U S A 92, 4902–4906.

    Article  PubMed  CAS  Google Scholar 

  36. Tang, H., Kim, Y., Severinov, K., Goldfarb, A., and Ebright, R.H. (1996). Escherichia coli RNA polymerase holoenzyme: rapid reconstitution from recombinant α, β, β′, and σ subunits. Methods Enzymol. 273, 130–134.

    Article  PubMed  CAS  Google Scholar 

  37. Martin, E., Sagitov, V., Burova, E., Nikiforov, V., and Goldfarb, A. (1992). Genetic dissection of the transcription cycle. A mutant RNA polymerase that cannot hold onto a promoter. J. Biol. Chem. 267, 20175–20180.

    PubMed  CAS  Google Scholar 

  38. Zalenskaya, K., Lee, J., Chandrasekhar, N.G., Shin, Y.K., Slutsky, M., and Goldfarb, A. (1990). Recombinant RNA polymerase: inducible overexpression, purification and assembly of Escherichia coli rpo gene products. Gene 89, 7–12.

    Article  PubMed  CAS  Google Scholar 

  39. Mekler, V., Kortkhonjia, E., Mukhopadhyay, J., Knight, J., Revyakin, A., Kapanidis, A., Niu, W., Ebright, Y., Levy, R., and Ebright, R. (2002). Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 108, 599–614.

    Article  PubMed  CAS  Google Scholar 

  40. Staros, J., Bayley, H., Standring, D., and Knowles, J. (1978). Reduction of aryl azides by thiols: implications for the use of photoaffinity reagents. Biochem. Biophys. Res. Commun. 80, 568–572.

    Article  PubMed  CAS  Google Scholar 

  41. Melancon, P., Burgess, R., and Record, M. (1983). Direct evidence for the preferential binding of Escherichia coli RNA polymerase holoenzyme to the ends of deoxyribonucleic acid restriction fragments. Biochemistry 22, 5169–5176.

    Article  PubMed  CAS  Google Scholar 

  42. Hansen, J.N. (1976). Electrophoresis of ribonucleic acid on a polyacrylamide gel which contains disulfide cross-linkages. Anal. Biochem. 76, 37–44.

    Article  PubMed  CAS  Google Scholar 

  43. Hansen, J.N. (1980). Chemical and electrophoretic properties of solubilizable disulfide gels. Anal. Biochem. 105, 192–201.

    Article  PubMed  CAS  Google Scholar 

  44. Hansen, J.N. (1981). Use of solubilizable acrylamide disulfide gels for isolation of DNA fragments suitable for sequence analysis. Anal. Biochem. 116, 146–151.

    Article  PubMed  CAS  Google Scholar 

  45. Langowski, J., Urbanke, C., and Scuppe, E. (1984). Construction of a microprocessor-controlled pulsed quench-flow apparatus for the study of fast chemical and biochemical reactions. Anal. Biochem. 142, 91–97.

    Article  PubMed  CAS  Google Scholar 

  46. Johnson, K. (1995). Rapid quench kinetic analysis of polymerases, adenosinetriphosphatases, and enzyme intermediates. Methods Enzymol. 249, 38–61.

    Article  PubMed  CAS  Google Scholar 

  47. Hockensmith, J., Kubasek, W., Vorachek, W., and von Hippel, P. (1986). Laser cross-linking of nucleic acids to proteins: methodology and first application to the phage T4 DNA replication system. J. Biol. Chem. 261, 3512–3518.

    PubMed  CAS  Google Scholar 

  48. Hockensmith, J., Kubasek, W., Vorachek, W., Evertsz, E., and von Hippel, P. (1991). Laser cross-linking of protein-nucleic acid complexes. Methods Enzymol. 208, 211–236.

    Article  PubMed  CAS  Google Scholar 

  49. Shields, C., Chrisope, D., Schuster, G., Dixon, A., Poliakoff, M., and Turner, J. (1987). Photochemistry of aryl azides: detection and characterization of a dehydroazepine by time-resolved infrared spectroscopy and flash photolysis at room temperature. J. Am. Chem. Soc. 109, 4723–4726.

    Article  CAS  Google Scholar 

  50. Li, Y.-Z., Kirby, J., George, M., Poliakoff, M., and Schuster, G. (1988). 1,2-Didehydroazepines from the photolysis of substituted aryl azides: analysis of their chemical and physical properties by time-resolved spectroscopic methods. J. Am. Chem. Soc. 110, 8092–8098.

    Article  CAS  Google Scholar 

  51. Marcinek, A., Leyva, E., Whitt, D., and Platz, M. (1993). Evidence for stepwise nitrogen extrusion and ring expansion upon photolysis of phenyl azide. J. Am. Chem. Soc. 115, 8609–8612.

    Article  CAS  Google Scholar 

  52. Ebright, R.H., Ebright, Y. and Gunasekera, A. (1989). Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E. coli lac DNA site. Nucleic Acids Res. 17, 10295–10305.

    Article  PubMed  CAS  Google Scholar 

  53. Gilbert, W. (1976). Starting and stopping sequences for the RNA polymerase. In RNA Polymerase, Losick, R. and Chamberlin, M., eds. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 193–206.

    Google Scholar 

  54. Zhang, X., Zhou, Y., Ebright, Y. and Ebright, R.H. (1992). Catabolite gene activator protein (CAP) is not an acidic-activating-region transcription activator protein: negatively charged amino acids of CAP that are solvent-accessible in the CAP-DNA complex play no role in transcription activation at the lac promoter. J. Biol. Chem. 267, 8136–8139.

    PubMed  CAS  Google Scholar 

  55. Kunkel, T. (1985). Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. U S A 82, 488–492.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The basic protocol for preparation of derivatized DNA fragments was developed by T. Lagrange, the basic protocol for preparation of RNAP was developed by H. Tang and K. Severinov, and the basic protocol for in-gel static photocrosslinking was developed by T.-K. Kim. We thank K. Severinov for plasmids; T.-K. Kim, T. Lagrange, D. Reinberg, and K. Severinov for discussion; and a Howard Hughes Medical Institute Investigatorship; and National Institutes of Health grant GM41376 to R.H.E. for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Ebright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Naryshkin, N., Druzhinin, S., Revyakin, A., Kim, Y., Mekler, V., Ebright, R.H. (2009). Static and Kinetic Site-Specific Protein-DNA Photocrosslinking: Analysis of Bacterial Transcription Initiation Complexes. In: Leblanc, B., Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology™, vol 543. Humana Press. https://doi.org/10.1007/978-1-60327-015-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-015-1_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-014-4

  • Online ISBN: 978-1-60327-015-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics