Skip to main content

The SUMO System: An Overview

  • Protocol
SUMO Protocols

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 497))

Abstract

Post-translational modification by SUMO is now recognized as an important regulatory method employed by the cell to reversibly modulate the activity, stability, or localization of intracellular proteins. A dedicated enzymatic machinery is involved in the processing, attachment, and removal of the modifier with high selectivity. SUMO modification generally alters the properties of the modified target by influencing—either positively or negatively—its interactions with other cellular factors. As a consequence, the SUMO system contributes to the regulation of numerous biological pathways, ranging from nucleocytoplasmic transport to the repression of transcriptional activity and the maintenance of genome stability by its influence on DNA recombination and repair. This chapter gives a brief overview over the enzymes of the SUMO system, its regulation, and its functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz, D. C. and Hochstrasser, M. (2003) A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 28, 321–328.

    Article  PubMed  CAS  Google Scholar 

  2. Kerscher, O., Felberbaum, R., and Hochstrasser, M. (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.

    Article  PubMed  CAS  Google Scholar 

  4. Geiss-Friedlander, R. and Melchior, F. (2007) Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell. Biol. 8, 947–956.

    Article  PubMed  CAS  Google Scholar 

  5. Owerbach, D., McKay, E. M., Yeh, E. T., Gabbay, K. H., and Bohren, K. M. (2005) A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem. Biophys. Res. Commun. 337, 517–520.

    Article  PubMed  CAS  Google Scholar 

  6. Mukhopadhyay, D. and Dasso, M. (2007) Modification in reverse: the SUMO proteases. Trends Biochem. Sci. 32, 286–295.

    Article  PubMed  CAS  Google Scholar 

  7. Saitoh, H. and Hinchey, J. (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258.

    Article  PubMed  CAS  Google Scholar 

  8. Vertegaal, A. C. (2007) Small ubiquitin-related modifiers in chains. Biochem. Soc. Trans. 35, 1422–1423.

    Article  PubMed  CAS  Google Scholar 

  9. Bylebyl, G. R., Belichenko, I., and Johnson, E. S. (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem. 278, 44113–44120.

    Article  PubMed  CAS  Google Scholar 

  10. Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C., Tatham, M. H., Hay, R. T., Lamond, A. I., Mann, M., and Vertegaal, A. C. (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell. Proteomics 7, 132–144.

    PubMed  CAS  Google Scholar 

  11. Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H., and Hay, R. T. (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374.

    Article  PubMed  CAS  Google Scholar 

  12. Windecker, H. and Ulrich, H. D. (2008) Architecture and assembly of poly-SUMO chains on PCNA in Saccharomyces cerevisiae. J. Mol. Biol. 376, 221–231.

    Article  PubMed  CAS  Google Scholar 

  13. Cheng, C. H., Lo, Y. H., Liang, S. S., Ti, S. C., Lin, F. M., Yeh, C. H., Huang, H. Y., and Wang, T. F. (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20, 2067–2081.

    Article  PubMed  CAS  Google Scholar 

  14. Johnson, E. S., Schwienhorst, I., Dohmen, R. J., and Blobel, G. (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519

    Article  PubMed  CAS  Google Scholar 

  15. Lois, L. M. and Lima, C. D. (2005) Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451.

    Article  PubMed  CAS  Google Scholar 

  16. Johnson, E. S. and Blobel, G. (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 272, 26799–26802.

    Article  PubMed  CAS  Google Scholar 

  17. Tong, H., Hateboer, G., Perrakis, A., Bernards, R., and Sixma, T. K. (1997) Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem. 272, 21381–21387.

    Article  PubMed  CAS  Google Scholar 

  18. Bernier-Villamor, V., Sampson, D. A., Matunis, M. J., and Lima, C. D. (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356.

    Article  PubMed  CAS  Google Scholar 

  19. Johnson, E. S. and Blobel, G. (1999) Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 147, 981–994.

    Article  PubMed  CAS  Google Scholar 

  20. Hietakangas, V., Anckar, J., Blomster, H. A., Fujimoto, M., Palvimo, J. J., Nakai, A., and Sistonen, L. (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl. Acad. Sci. USA 103, 45–50.

    Article  PubMed  CAS  Google Scholar 

  21. Yang, S. H., Galanis, A., Witty, J., and Sharrocks, A. D. (2006) An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J. 25, 5083–5093.

    Article  PubMed  CAS  Google Scholar 

  22. Hochstrasser, M. (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107, 5–8.

    Article  PubMed  CAS  Google Scholar 

  23. Palvimo, J. J. (2007) PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription. Biochem. Soc. Trans. 35, 1405–1408.

    Article  PubMed  CAS  Google Scholar 

  24. Sharrocks, A. D. (2006) PIAS proteins and transcriptional regulation-more than just SUMO E3 ligases? Genes Dev. 20, 754–758.

    Article  PubMed  CAS  Google Scholar 

  25. Johnson, E. S. and Gupta, A. A. (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735–744.

    Article  PubMed  CAS  Google Scholar 

  26. Andrews, E. A., Palecek, J., Sergeant, J., Taylor, E., Lehmann, A. R., and Watts, F. Z. (2005) Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 25, 185–196.

    Article  PubMed  CAS  Google Scholar 

  27. Potts, P. R. and Yu, H. (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 25, 7021–7032.

    Article  PubMed  CAS  Google Scholar 

  28. Zhao, X. and Blobel, G. (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. USA 102, 4777–4782.

    Article  PubMed  CAS  Google Scholar 

  29. Pichler, A., Knipscheer, P., Saitoh, H., Sixma, T. K., and Melchior, F. (2004) The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nat. Struct. Mol. Biol. 11, 984–991.

    Article  PubMed  CAS  Google Scholar 

  30. Reverter, D. and Lima, C. D. (2005) Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687–692.

    Article  PubMed  CAS  Google Scholar 

  31. Carbia-Nagashima, A., Gerez, J., Perez-Castro, C., Paez-Pereda, M., Silberstein, S., Stalla, G. K., Holsboer, F., and Arzt, E. (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131, 309–323.

    Article  PubMed  CAS  Google Scholar 

  32. Kagey, M. H., Melhuish, T. A., and Wotton, D. (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113, 127–137.

    Article  PubMed  CAS  Google Scholar 

  33. Wotton, D. and Merrill, J. C. (2007) Pc2 and SUMOylation. Biochem. Soc. Trans. 35, 1401–1404.

    Article  PubMed  CAS  Google Scholar 

  34. Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M., and Yao, T. P. (2005) Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol. Cell. Biol. 25, 8456–8464.

    Article  PubMed  CAS  Google Scholar 

  35. Hay, R. T. (2007) SUMO-specific proteases: a twist in the tail. Trends Cell Biol. 17, 370–376.

    Article  PubMed  CAS  Google Scholar 

  36. Li, S. -J. and Hochstrasser, M. (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol. 20, 2367–2377.

    Article  PubMed  CAS  Google Scholar 

  37. Li, S. J. and Hochstrasser, M. (1999) A new protease required for cell-cycle progression in yeast. Nature 398, 246–251.

    Article  PubMed  CAS  Google Scholar 

  38. Hayashi, T., Seki, M., Maeda, D., Wang, W., Kawabe, Y., Seki, T., Saitoh, H., Fukagawa, T., Yagi, H., and Enomoto, T. (2002) Ubc9 is essential for viability of higher eukaryotic cells. Exp. Cell Res. 280, 212–221.

    Article  PubMed  CAS  Google Scholar 

  39. Nacerddine, K., Lehembre, F., Bhaumik, M., Artus, J., Cohen-Tannoudji, M., Babinet, C., Pandolfi, P. P., and Dejean, A. (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9, 769–779.

    Article  PubMed  CAS  Google Scholar 

  40. Seufert, W., Futcher, B., and Jentsch, S. (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373, 78–81.

    Article  PubMed  CAS  Google Scholar 

  41. Tanaka, K., Nishide, J., Okazaki, K., Kato, H., Niwa, O., Nakagawa, T., Matsuda, H. Kawamukai, M., and Murakami, Y. (1999) Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol. Cell. Biol. 19, 8660–8672.

    PubMed  CAS  Google Scholar 

  42. Girdwood, D. W., Tatham, M. H., and Hay, R. T. (2004) SUMO and transcriptional regulation. Semin. Cell Dev. Biol. 15, 201–210.

    Article  PubMed  CAS  Google Scholar 

  43. Muller, S., Ledl, A., and Schmidt, D. (2004) SUMO: a regulator of gene expression and genome integrity. Oncogene 23, 1998–2008.

    Article  PubMed  Google Scholar 

  44. Melchior, F., Schergaut, M., and Pichler, A. (2003) SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612–618.

    Article  PubMed  CAS  Google Scholar 

  45. Ulrich, H. D. (2005) Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol. 15, 525–532.

    Article  PubMed  CAS  Google Scholar 

  46. Seeler, J. S., Bischof, O., Nacerddine, K., and Dejean, A. (2007) SUMO, the three Rs and cancer. Curr. Top. Microbiol. Immunol. 313, 49–71.

    Article  PubMed  CAS  Google Scholar 

  47. Watts, F. Z. (2007) The role of SUMO in chromosome segregation. Chromosoma 116, 15–20.

    Article  PubMed  Google Scholar 

  48. Gill, G. (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18, 2046–2059.

    Article  PubMed  CAS  Google Scholar 

  49. Kerscher, O. (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550–555.

    Article  PubMed  CAS  Google Scholar 

  50. Steinacher, R. and Schar, P. (2005) Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr. Biol. 15, 616–623.

    Article  PubMed  CAS  Google Scholar 

  51. Gill, G. (2005) Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev. 15, 536–541.

    Article  PubMed  CAS  Google Scholar 

  52. Ross, S., Best, J. L., Zon, L. I., and Gill, G. (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10, 831–842.

    Article  PubMed  CAS  Google Scholar 

  53. Lin, D. Y., Huang, Y. S., Jeng, J. C., Kuo, H. Y., Chang, C. C., Chao, T. T., Ho, C. C., Chen, Y. C., Lin, T. P., Fang, H. I. et al. (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24, 341–354.

    Article  PubMed  CAS  Google Scholar 

  54. Branzei, D. and Foiani, M. (2005) The DNA damage response during DNA replication. Curr. Opin. Cell Biol. 17, 568–575.

    Article  PubMed  CAS  Google Scholar 

  55. Denison, C., Rudner, A. D., Gerber, S. A., Bakalarski, C. E., Moazed, D., and Gygi, S. P. (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteomics 4, 246–254.

    Article  PubMed  CAS  Google Scholar 

  56. Panse, V. G., Hardeland, U., Werner, T., Kuster, B., and Hurt, E. (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem. 279, 41346–41351.

    Article  PubMed  CAS  Google Scholar 

  57. Vertegaal, A. C., Ogg, S. C., Jaffray, E., Rodriguez, M. S., Hay, R. T., Andersen, J. S., Mann, M., and Lamond, A. I. (2004) A proteomic study of SUMO-2 target proteins. J. Biol. Chem. 279, 33791–33798.

    Article  PubMed  CAS  Google Scholar 

  58. Wohlschlegel, J. A., Johnson, E. S., Reed, S. I., and Yates, J. R. 3rd. (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 279, 45662–45668.

    Article  PubMed  CAS  Google Scholar 

  59. Zhou, W., Ryan, J. J., and Zhou, H. (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J. Biol. Chem. 279, 32262–32268.

    Article  PubMed  CAS  Google Scholar 

  60. Takahashi, Y., Yong-Gonzalez, V., Kikuchi, Y., and Strunnikov, A. (2006) SIZ1/SIZ2 control of chromosome transmission fidelity is mediated by the sumoylation of topoi-somerase II. Genetics 172, 783–794.

    Article  PubMed  CAS  Google Scholar 

  61. Bachant, J., Alcasabas, A., Blat, Y., Kleckner, N., and Elledge, S. J. (2002) The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol. Cell 9, 1169–1182.

    Article  PubMed  CAS  Google Scholar 

  62. Azuma, Y., Arnaoutov, A., and Dasso, M. (2003) SUMO-2/3 regulates topoisomerase II in mitosis. J. Cell Biol. 163, 477–487.

    Article  PubMed  CAS  Google Scholar 

  63. Liu, L. F., Desai, S. D., Li, T. K., Mao, Y., Sun, M., and Sim, S. P. (2000) Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci. 922, 1–10.

    Article  PubMed  CAS  Google Scholar 

  64. Torres-Rosell, J., Sunjevaric, I., De Piccoli, G., Sacher, M., Eckert-Boulet, N., Reid, R., Jentsch, S., Rothstein, R., Aragon, L., and Lisby, M. (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9, 923–931.

    Article  PubMed  CAS  Google Scholar 

  65. Papouli, E., Chen, S., Davies, A. A., Huttner, D., Krejci, L., Sung, P., and Ulrich, H. D. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133.

    Article  PubMed  CAS  Google Scholar 

  66. Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C., and Jentsch, S. (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433.

    PubMed  CAS  Google Scholar 

  67. Hannich, J. T., Lewis, A., Kroetz, M. B., Li, S. J., Heide, H., Emili, A., and Hochstrasser, M. (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 280, 4102–4110.

    Article  PubMed  CAS  Google Scholar 

  68. Prudden, J., Pebernard, S., Raffa, G., Slavin, D. A., Perry, J. J., Tainer, J. A., McGowan, C. H., and Boddy, M. N. (2007) SUMO targeted ubiquitin ligases in genome stability. EMBO J. 26, 4089–4101.

    Article  PubMed  CAS  Google Scholar 

  69. Sun, H., Leverson, J. D., and Hunter, T. (2007) Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J. 26, 4102–4112.

    Article  PubMed  CAS  Google Scholar 

  70. Uzunova, K., Gottsche, K., Miteva, M., Weisshaar, S. R., Glanemann, C., Schnell-hardt, M., Niessen, M., Scheel, H., Hofmann, K., Johnson, E. S. et al. (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem. 282, 34167–34175.

    Article  PubMed  CAS  Google Scholar 

  71. Xie, Y., Kerscher, O., Kroetz, M. B., McCo-nchie, H. F., Sung, P., and Hochstrasser, M. (2007) The yeast HEX3-SLX8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem. 282, 34176–34184.

    Article  PubMed  CAS  Google Scholar 

  72. Desterro, J. M., Rodriguez, M. S., and Hay, R. T. (1998) SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2, 233–239.

    Article  PubMed  CAS  Google Scholar 

  73. Bossis, G. and Melchior, F. (2006) SUMO: regulating the regulator. Cell Div. 1, 13.

    Article  PubMed  Google Scholar 

  74. Guo, B., Yang, S. H., Witty, J., and Shar-rocks, A. D. (2007) Signalling pathways and the regulation of SUMO modification. Bio-chem. Soc. Trans. 35, 1414–1418.

    Article  CAS  Google Scholar 

  75. Roscic, A., Moller, A., Calzado, M. A., Ren-ner, F., Wimmer, V. C., Gresko, E., Ludi, K. S., and Schmitz, M. L. (2006) Phospho-rylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol. Cell 24, 77–89.

    Article  PubMed  CAS  Google Scholar 

  76. Boggio, R., Colombo, R., Hay, R. T., Dra-etta, G. F., and Chiocca, S. (2004) A mechanism for inhibiting the SUMO pathway. Mol. Cell 16, 549–561.

    Article  PubMed  CAS  Google Scholar 

  77. Bossis, G. and Melchior, F. (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349–357.

    Article  PubMed  CAS  Google Scholar 

  78. Kurepa, J., Walker, J. M., Smalle, J., Gosink, M. M., Davis, S. J., Durham, T. L., Sung, D. Y., and Vierstra, R. D. (2003) The small ubiqui-tin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J. Biol. Chem. 278, 6862–6872.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I apologize to those researchers whose work could not be cited directly in this review due to space constraints. Work in this laboratory is supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ulrich, H.D. (2009). The SUMO System: An Overview. In: Ulrich, H.D. (eds) SUMO Protocols. METHODS IN MOLECULAR BIOLOGY™, vol 497. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-566-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-566-4_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-80-0

  • Online ISBN: 978-1-59745-566-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics