Skip to main content

Magnetoencephalography (MEG)

  • Protocol
Dynamic Brain Imaging

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 489))

Abstract

Magnetoencephalography (MEG) encompasses a family of non-contact, non-invasive techniques for detecting the magnetic field generated by the electrical activity of the brain, for analyzing this MEG signal and for using the results to study brain function. The overall purpose of MEG is to extract estimates of the spatiotemporal patterns of electrical activity in the brain from the measured magnetic field outside the head. The electrical activity in the brain is a manifestation of collective neuronal activity and, to a large extent, the currency of brain function. The estimates of brain activity derived from MEG can therefore be used to study mechanisms and processes that support normal brain function in humans and help us understand why, when and how they fail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen, D. (1968) Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science 161, 784–786.

    Article  CAS  PubMed  Google Scholar 

  2. Fenwick, P. (1987) The inverse problem: A medical perspective. Phys. Med. Biol. 32, 5–9.

    Article  CAS  PubMed  Google Scholar 

  3. H.von Helmholtz (1853) ber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Phys. Chem. 89, 211, 353–233, 377.

    Article  Google Scholar 

  4. Ioannides, A.A. (2001) Real Time Human Brain Function: Observations and Inferences from Single Trial Analysis of Magnetoencephalographic Signals. Clinical EEG 32(3), 98–111.

    CAS  Google Scholar 

  5. Liu, L., and Ioannides, A.A. (1996) A correlation study of averaged and single trial MEG signals: The average describes multiple histories each in a different set of single trials. Brain Topogr. 8, 385–396.

    Article  CAS  PubMed  Google Scholar 

  6. Hamalainen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., and Lounasmaa, O.V. (1993) Magnetoencephalography – Theory, Instrumentation, and Applications to Noninvasive Studies of the Working Human Brain. Rev. Modern Phys. 65, 413–497.

    Article  CAS  Google Scholar 

  7. Darvas, F., Pantazis, D., Kucukaltun-Yildirim, E., and Leahy, R.M. (2004) Mapping human brain function with MEG and EEG: Methods and validation. Neuroimage 23 Suppl 1, S289–S299.

    Google Scholar 

  8. Hillebrand, A., Singh, K.D., Holliday, I.E., Furlong, P.L., and Barnes, G.R. (2005) A new approach to neuroimaging with magnetoencephalography. Human Brain Map. 25, 199–211.

    Article  Google Scholar 

  9. Ioannides, A.A., Bolton, J.P.R., and Clarke, C.J.S. (1990) Continuous probabilistic solutions to the biomagnetic inverse problem. Inv. Prob. 6, 523–542.

    Article  Google Scholar 

  10. Taylor, J.G., Ioannides, A.A., and Muller-Gartner, H.W. (1999) Mathematical analysis of lead field expansions. IEEE Trans. Med. Imaging 18, 151–163.

    Article  CAS  PubMed  Google Scholar 

  11. Ribary, U., Ioannides, A.A., Singh, K.D., Hasson, R., Bolton, J.P.R., Lado, F., Mogilner, A., and Llinas, R. (1991) Magnetic-Field Tomography of Coherent Thalamocortical 40-Hz Oscillations in Humans. Proc. Natl. Acad. Sci. USA 88, 11037–11041.

    Article  CAS  PubMed  Google Scholar 

  12. Ioannides, A.A. (2006) Magnetoencephalography as a research tool in neuroscience: State of the art. Neuroscientist. 12, 524–544.

    Article  PubMed  Google Scholar 

  13. Ioannides, A.A. (2007) Dynamic functional connectivity. Curr. Opin. Neurobiol. 17, 161–170.

    Google Scholar 

  14. Ioannides, A.A., Fenwick, P.B.C., and Liu, L.C. (2005) Widely distributed magnetoencephalography spikes related to the planning and execution of human Saccades. J. Neurosci. 25, 7950–7967.

    Article  CAS  PubMed  Google Scholar 

  15. Kominis, I.K., Kornack, T.W., Allred, J.C., and Romalis, M.V. (2003) A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599.

    Article  CAS  PubMed  Google Scholar 

  16. Bell, A.J., and Sejnowski, T.J. (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159.

    Article  CAS  PubMed  Google Scholar 

  17. Sarvas, J. (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32, 11–22.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, M.X., Mosher, J.C., and Leahy, R.M. (1999) A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. Phys. Med. Biol. 44, 423–440.

    Google Scholar 

  19. Pascualmarqui, R.D., Michel, C.M., and Lehmann, D. (1994) Low-Resolution Electromagnetic Tomography – A New Method for Localizing Electrical-Activity in the Brain. Int J. Psychophysiol. 18, 49–65.

    Article  CAS  Google Scholar 

  20. Gorodnitsky, I., and Rao, B.D. (1992) Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45, 600–616.

    Google Scholar 

  21. Ioannides, A.A., and Taylor, J.G. (1999) Minimum norm, Magnetic Field Tomography and FOCUSS. Tohoku University Press, Sendai, pp. 228–231.

    Google Scholar 

  22. Ioannides, A.A., Singh, K.D., Hasson, R., Bauman, S.B., Rogers, R.L., Guinto, F.C., and Papanicolaou, A.C. (2007) Comparison of current dipole and magnetic field tomography analyses of cortical response to auditory stimuli. Brain Topogr. 6, 27–34.

    Article  Google Scholar 

  23. Ioannides, A.A., Hellstrand, E., and Abrahamfuchs, K. (1993) Point and Distributed Current-Density Analysis of Interictal Epileptic Activity Recorded by Magnetoencephalography. Physiol. Measur. 14, 121–130.

    Article  CAS  Google Scholar 

  24. Ioannides, A.A., Kostopoulos, G.K., Laskaris, N.A., Liu, L.H., Shibata, T., Schellens, M., PoghosyaN, V., and Khurshudyan, A. (2002) Timing and connectivity in the human somatosensory cortex from single trial mass electrical activity. Human Brain Mapp. 15, 231–246.

    Article  Google Scholar 

  25. Moradi, F., Liu, L.C., Cheng, K., Waggoner, R.A., Tanaka, K., and Ioannides, A.A. (2003) Consistent and precise localization of brain activity in human primary visual cortex by MEG and fMRI. Neuroimage. 18, 595–609.

    Article  CAS  PubMed  Google Scholar 

  26. Tzelepi, A., Ioannides, A.A., and PoghosyaN, V. (2001) Early (N70m) neuromagnetic signal topography and striate and extrastriate generators following pattern onset quadrant stimulation. Neuroimage 13, 702–718.

    Article  CAS  PubMed  Google Scholar 

  27. Laskaris, N.A., Liu, L.C., and Ioannides, A.A. (2003) Single-trial variability in early visual neuromagnetic responses: an explorative study based on the regional activation contributing to the N70m peak. Neuroimage 20, 765–783.

    Article  CAS  PubMed  Google Scholar 

  28. Makeig, S., Westerfield, M., Jung, T.P., Enghoff, S., Townsend, J., Courchesne, E., and Sejnowski, T.J. (2002) Dynamic brain sources of visual evoked responses. Science 295, 690–694.

    Article  CAS  PubMed  Google Scholar 

  29. Furey, M.L., Tanskanen, T., Beauchamp, M.S., Avikainen, S., Uutela, K., Hari, R., and Haxby, J.V. (2006) Dissociation of face-selective cortical responses by attention. Proc. Natl. Acad. Sci. U S A 103, 1065–1070.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, M.J., Hasson, R., and Ioannides, A.A. (1993) A transputer-based system for Magnetic Field Tomography. Transputer Applications and Systems ‘93. IOS Press, Amsterdam, pp. 1290–1297.

    Google Scholar 

  31. Ioannides, A.A., PoghosyaN, V., Liu, L.C., and Streit, M. (2002) Early amygdala activations in normal and schizophrenic subjects. Soc. Neurosci. Abstr., p. 521.5.

    Google Scholar 

  32. Ioannides, A.A. (2007) MEG single-event Analysis: Networks for Normal Brain Function and Their Changes in Schizophrenia. Complex Medical Engineering. Springer, pp. 361–374.

    Google Scholar 

  33. LeDoux, J.E. (1996) The Emotional Brain. Simon and Schuster, New York.

    Google Scholar 

  34. Ioannides, A.A., PoghosyaN, V., Dammers, R., and Streit, M. (2004) Real-time neural activity and connectivity in healthy individuals and schizophrenia patients. Neuroimage 23, 473–482.

    Article  PubMed  Google Scholar 

  35. Luo, Q., Holroyd, T., Jones, M., Hendler, T., and Blair, J. (2007) Neural dynamics for facial threat processing as revealed by gamma band synchronization using MEG. Neuroimage 34, 839–847.

    Article  PubMed  Google Scholar 

  36. Laskaris, N.A., and Ioannides, A.E. (2001) Exploratory data analysis of evoked response single trials based on minimal spanning tree. Clin. Neurophysiol. 112, 698–712.

    Article  CAS  PubMed  Google Scholar 

  37. Abu Bakar, A., Liu, L.C., Conci, M., Elliot, M.A., and Ioannides, A.A. (2008, In press) Visual Field and Task Influence Illusory Figure Responses. Human Brain Mapping.

    Google Scholar 

  38. Talairach, J., and Tournoux, P. (1988) Co-planar stereotaxic atlas of the human brain. G. Thieme, Stuttgart ; New York.

    Google Scholar 

  39. Raz, J., Turetsky, B., and Fein, G. (1988) Confidence-Intervals for the Signal-To-Noise Ratio When A Signal Embedded in Noise Is Observed Over Repeated Trials. Ieee Transactions on Biomedical Engineering 35, 646–649.

    Article  CAS  PubMed  Google Scholar 

  40. Laskaris, N., Fotopoulos, S., Papathanasopoulos, P., and Bezerianos, A. (1997) Robust moving averages, with Hopfield neural network implementation, for monitoring evoked potential signals. Evoked Potentials-Electroencephalography and Clinical Neurophysiology 104, 151–156.

    Article  CAS  Google Scholar 

  41. Liu, L.C., Fenwick, P.B.C., Laskaris, N.A., Schellens, M., PoghosyaN, V., Shibata, T., and Ioannides, A.A. (2003) The human primary somatosensory cortex response contains components related to stimulus frequency and perception in a frequency discrimination task. Neuroscience 121, 141–154.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ioannides, A.A. (2009). Magnetoencephalography (MEG). In: Hyder, F. (eds) Dynamic Brain Imaging. METHODS IN MOLECULAR BIOLOGY™, vol 489. Humana Press. https://doi.org/10.1007/978-1-59745-543-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-543-5_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-74-9

  • Online ISBN: 978-1-59745-543-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics