Skip to main content

Dynamic MRI of Small Electrical Activity

  • Protocol
Dynamic Brain Imaging

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 489))

Abstract

Neuroscience methods entailing in vivo measurements of brain activity have greatly contributed to our understanding of brain function for the past decades, from the invasive early studies in animals using single-cell electrical recordings, to the noninvasive techniques in humans of scalp-recorded electroencephalography (EEG) and magnetoencephalography (MEG), positron emission tomography (PET), and, most recently, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI). A central objective of these techniques is to measure neuronal activities with high spatial and temporal resolution. Each of these methods, however, has substantial limitations in this regard. Single-cell recording is invasive and only typically records cellular activity in a single location; EEG/MEG cannot generally provide accurate and unambiguous delineations of neuronal activation spatially; and the most sophisticated BOLD-based fMRI methods are still fundamentally limited by their dependence on the very slow hemodynamic responses upon which they are based. Even the latest neuroimaging methodology (e.g., multimodal EEG/fMRI) does not yet unambiguously provide accurate localization of neuronal activation spatially and temporally. There is hence a need to further develop noninvasive imaging methods that can directly image neuroelectric activity and thus truly achieve a high temporal resolution and spatial specificity in humans. Here, we discuss the theory, implementation, and potential utility of an MRI technique termed Lorentz effect imaging (LEI) that can detect spatially incoherent yet temporally synchronized, minute electrical activities in the neural amplitude range (microamperes) when they occur in a strong magnetic field. Moreover, we demonstrate with our preliminary results in phantoms and in vivo, the feasibility of imaging such activities with a temporal resolution on the order of milliseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.K. Kwong, J.W. Belliveau, D.A. Chesler, I.E. Goldberg, R.M. Weisskoff, B.P. Poncelet, D.N. Kennedy, B.E. Hoppel, M.S. Cohen, R. Turner, H.-M. Cheng, T.J. Brady, B.R. Rosen, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, Proc. Natl. Acad. Sci. USA 89 (1992) 5675–5679.

    Article  CAS  PubMed  Google Scholar 

  2. P.A. Bandettini, E.C. Wong, R.S. Hinks, R.S. Tikofski, J.S. Hyde, Time course EPI of human brain function during task activation, Magn. Reson. Med. 25 (1992)390–397.

    Article  CAS  PubMed  Google Scholar 

  3. S. Ogawa, D.W. Tank, R. Menon, J.M. Ellermann, S.G. Kim, H. Merkle, K. Ugurbil, Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging, Proc. Natl. Acad. Sci. USA 89 (1992) 5951–5955.

    Article  CAS  PubMed  Google Scholar 

  4. S. Ogawa, R.S. Menon, D.W. Tank, D.G. Kim, H. Merkle, J.M. Ellermann, K. Ugurbil, Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model, Biophys. J. 64 (1993) 803–812.

    CAS  Google Scholar 

  5. S.G. Kim, W. Richter, K. Ugurbil, Limitations of temporal resolution in functional MRI, Magn. Reson. Med. 37 (1997) 631–636.

    Article  CAS  PubMed  Google Scholar 

  6. R.L. Buckner, Event-related fMRI and the hemodynamic response, Hum. Brain Mapp. 6 (1998) 373–377.

    Article  CAS  PubMed  Google Scholar 

  7. M. Joy, G. Scott, M. Henkelman, In vivo detection of applied electric currents by magnetic resonance imaging, Magn. Reson. Imaging 7 (1989) 89–94.

    Article  CAS  PubMed  Google Scholar 

  8. J. Bodurka, A. Jesmanowicz, J.S. Hyde, H. Xu, L. Estkowski, S.J. Li, Current-induced magnetic resonance phase imaging, J. Magn. Reson. 137 (1999) 265–271.

    Article  CAS  PubMed  Google Scholar 

  9. J. Bodurka, P.A. Bandettini, Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes, Magn. Reson. Med. 47 (2002)1052–1058.

    Article  PubMed  Google Scholar 

  10. D. Konn, P. Gowland, R. Bowtell, MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere: A model for direct detection of neuronal currents in the brain, Magn. Reson. Med. 50 (2003) 40–49.

    Article  PubMed  Google Scholar 

  11. H. Kamei, K. Iramina, K. Yoshikawa, S. Ueno, Neuronal current distribution imaging using magnetic resonance, IEEE Trans. Magn. 35 (1999) 4109–4111.

    Article  Google Scholar 

  12. J. Xiong, P.T. Fox, J.H. Gao, Directly mapping magnetic field effects of neuronal activity by magnetic resonance imaging, Hum. Brain Mapp. 20 (2003) 41–49.

    Article  CAS  PubMed  Google Scholar 

  13. R. Chu, J.A. de Zwart, P. van Gelderen, M. Fukunaga, P. Kellman, T. Holroyd, J.H. Duyn, Hunting for neuronal currents: Absence of rapid MRI signal changes during visual-evoked response, Neuroimage 23 (2004) 1059–1067.

    Google Scholar 

  14. M. Bianciardi, F. Di Russo, T. Aprile, B. Maraviglia, G.E. Hagberg, Combination of BOLD-fMRI and VEP recordings for spin-echo MRI detection of primary magnetic effects caused by neuronal currents, Magn. Reson. Imaging 22 (2004)1429–1440.

    Article  PubMed  Google Scholar 

  15. D. Konn, S. Leach, P. Gowland, R. Bowtell, Initial attempts at directly detecting alpha wave activity in the brain using MRI, Magn. Reson. Imaging 22 (2004)1413–1427.

    Article  PubMed  Google Scholar 

  16. P.A. Bandettini, N. Petridou, J. Bodurka, Direct detection of neuronal activity with MRI: Fantasy, possibility, or reality?, Appl. Magn. Reson. 29 (2005) 65–88.

    Article  Google Scholar 

  17. N. Petridou, D. Pleaz, A.C. Silva, M. Lowe, J. Bodurka, P.A. Bandettini, Direct magnetic resonance detection of neuronal electrical activity, Proc. Natl. Acad. Sci. USA 103 (2006) 16015–16020.

    Article  CAS  PubMed  Google Scholar 

  18. L.S. Chow, G.G. Cook, E. Whitby, M.N.J. Paley, Investigating direct detection of axon firing in the adult human optic nerve using MRI, Neuroimage 30 (2006) 835–846.

    Article  PubMed  Google Scholar 

  19. G.E. Hagberg, M. Bianciardi, B. Maraviglia, Challenges for detection of neuronal currents by MRI, Magn. Reson. Imaging 24 (2006) 483–493.

    Google Scholar 

  20. Y. Xue, J.-H. Gao, J. Xiong, Direct MRI detection of neuronal magnetic fields in the brain: Theoretical modeling, Neuroimage 31 (2006) 550–559.

    Article  PubMed  Google Scholar 

  21. L.S. Chow, G.G. Cook, E. Whitby, M.N.J. Paley, Investigation of MR signal modulation due to magnetic fields from neuronal currents in the adult human optic nerve and visual cortex, Magn. Reson. Imaging 24 (2006) 681–691.

    Google Scholar 

  22. L.M. Parkes, F.P. de Lange, P. Fries, I. Toni, D.G. Norris, Inability to directly detect magnetic field changes associated with neuronal activity, Magn. Reson. Med. 57 (2007) 411–416.

    Google Scholar 

  23. A.W. Song, A.M. Takahashi, Lorentz effect imaging, Magn. Reson. Imaging 19 (2001) 763–767.

    CAS  Google Scholar 

  24. T.-K. Truong, J.L. Wilbur, A.W. Song, Synchronized detection of minute electrical currents with MRI using Lorentz effect imaging, J. Magn. Reson. 179 (2006) 85–91.

    Article  CAS  PubMed  Google Scholar 

  25. T.-K. Truong, A.W. Song, Finding neuroelectric activity under magnetic-field oscillations (NAMO) with magnetic resonance imaging in vivo, Proc. Natl. Acad. Sci. USA 103 (2006) 12598–12601.

    Article  CAS  PubMed  Google Scholar 

  26. T.-K. Truong, A. Avram, A. W. Song, Lorentz effect imaging of ionic currents in solutions, J. Magn. Reson. 59 (2008) 221–227.

    Article  Google Scholar 

  27. E.O. Stejskal, J.E. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient, J. Chem. Phys. 42 (1965) 288–292.

    Article  CAS  Google Scholar 

  28. J. Kimura, Electrodiagnosis in disease of nerve and muscle: Principles and practice, Oxford University Press, Oxford (2001).

    Google Scholar 

Download references

Acknowledgments

This work was, in part, supported by the NIH (NS 50329, NS 41328) and NSF (BES 602529).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Song, A.W., Truong, TK., Woldorff, M. (2008). Dynamic MRI of Small Electrical Activity. In: Hyder, F. (eds) Dynamic Brain Imaging. METHODS IN MOLECULAR BIOLOGY™, vol 489. Humana Press. https://doi.org/10.1007/978-1-59745-543-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-543-5_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-74-9

  • Online ISBN: 978-1-59745-543-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics