Skip to main content

The MIRA Method for DNA Methylation Analysis

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 507))

Abstract

DNA methylation patterns are often altered in human cancer and aberrant methylation is considered a hallmark of malignant transformation. Several methods have been developed for the characterization of gene-specific and genome-wide DNA methylation patterns. In this chapter, we describe the methylated-CpG island recovery assay (MIRA), which is based on the high affinity of the MBD2b/MBD3L1 complex for double-stranded CpG-methylated DNA. MIRA has been used in combination with microarray platforms to map DNA methylation patterns across the human genome.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jones, P. A., Baylin, S. B. (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415–428.

    Article  CAS  PubMed  Google Scholar 

  2. Bird, A. P. (1986) CpG-rich islands and the function of DNA methylation. Nature 321, 209–213.

    Article  CAS  PubMed  Google Scholar 

  3. Pfeifer, G. P. (2006) Mutagenesis at methylated CpG sequences. Curr Top Microbiol Immunol 301, 259–281.

    Article  CAS  PubMed  Google Scholar 

  4. Esteller, M. (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8, 286–298.

    Article  CAS  PubMed  Google Scholar 

  5. Costello, J. F., Fruhwald, M. C., Smiraglia, D. J., et al. (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24,132–138.

    Article  CAS  PubMed  Google Scholar 

  6. Ushijima, T., Morimura, K., Hosoya, Y., et al. (1997) Establishment of methylation-sensitive-representational difference analysis and isolation of hypo- and hypermethylated genomic fragments in mouse liver tumors. Proc Natl Acad Sci USA 94, 2284–2289.

    Article  CAS  PubMed  Google Scholar 

  7. Yan, P. S., Chen, C. M., Shi, H., et al. (2001) Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res 61, 8375–8380.

    CAS  PubMed  Google Scholar 

  8. Sato, N., Fukushima, N., Maitra, A., et al. (2003) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63, 3735–3742.

    CAS  PubMed  Google Scholar 

  9. Shi, H., Wei, S. H., Leu, Y. W., et al. (2003) Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res 63, 2164–2171.

    CAS  PubMed  Google Scholar 

  10. Suzuki, H., Gabrielson, E., Chen, W., et al. (2002) A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 31, 141–149.

    Article  CAS  PubMed  Google Scholar 

  11. Yamashita, K., Upadhyay, S., Osada, M., et al. (2002) Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell 2, 485–495.

    Article  CAS  PubMed  Google Scholar 

  12. Weber, M., Davies, J. J., Wittig, D., et al. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37, 853–862.

    Article  CAS  PubMed  Google Scholar 

  13. Lippman, Z., Gendrel, A. V., Colot, V., et al. (2005) Profiling DNA methylation patterns using genomic tiling microarrays. Nat Methods 2, 219–224.

    Article  CAS  PubMed  Google Scholar 

  14. Nouzova, M., Holtan, N., Oshiro, M. M., et al. (2004) Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays. J Pharmacol Exp Ther 311, 968–981.

    Article  CAS  PubMed  Google Scholar 

  15. Taylor, K. H., Kramer, R. S., Davis, J. W., et al. (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67, 8511–8618.

    Article  CAS  PubMed  Google Scholar 

  16. Hendrich, B., Bird, A. (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18, 6538–6547.

    CAS  PubMed  Google Scholar 

  17. Rauch, T., Li, H., Wu, X., et al. (2006) MIRA-assisted microarray analysis, a new technology for the determination of genome-wide DNA methylation patterns, identifies frequent methylation of homeodomain containing genes in lung cancer cells. Cancer Res 66, 7939–7947.

    Article  CAS  PubMed  Google Scholar 

  18. Rauch, T., Pfeifer, G. P. (2005) Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Invest 85,172–180.

    Article  Google Scholar 

  19. Rauch, T., Wang, Z., Zhang, X., et al. (2007) Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci USA 104, 5527–5532.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang, C. L., Jin, S. G., Pfeifer, G. P. (2004) MBD3L1 is a transcriptional repressor that interacts with MBD2 and components of the NuRD complex. J Biol Chem 279, 52456–52464.

    Article  CAS  PubMed  Google Scholar 

  21. Fraga, M. F., Ballestar, E., Montoya, G., et al. (2003) The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res 31, 1765–1774.

    Article  CAS  PubMed  Google Scholar 

  22. Swords, W. E. (2003) Chemical transformation ofE. coli. Methods Mol Biol 235, 49–55.

    CAS  PubMed  Google Scholar 

  23. Bickley, J., Owen, R. J. (1995) Preparation of bacterial genomic DNA. Methods Mol Biol 46, 141–148.

    CAS  PubMed  Google Scholar 

  24. Selzer, R. R., Richmond, T, A, Pofahl, N. J., et al. (2005) Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer 44, 305–319.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants CA104967 and CA128495 to GPP.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rauch, T.A., Pfeifer, G.P. (2009). The MIRA Method for DNA Methylation Analysis. In: Tost, J. (eds) DNA Methylation. Methods in Molecular Biology, vol 507. Humana Press. https://doi.org/10.1007/978-1-59745-522-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-522-0_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-61-9

  • Online ISBN: 978-1-59745-522-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics