Skip to main content

Improved Models for Animal Research

  • Chapter

Abstract

Experimental animal models are critical to understand gene function and human disease. Many rodent models are presently available providing avenues to elucidate gene function and/or to recapitulate specific pathological conditions. To a large extent, successful translation of clinical evidence or analytical data into appropriate mouse models is possible through progress in transgenic or gene deletion technology. Despite these significant improvements, major limitations still exist in manipulating the mouse genome. For this reason and to maximize success, the design and planning of mouse models need good knowledge concerning the requirements and limitations of commonly used strategies and emerging technologies. The purpose of this chapter is to provide a current overview of strategies for manipulating the mouse genome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bockamp E, Maringer M, Spangenberg C, et al. Of mice and models: Improved animal models for biomedical research. Physiol Genomics 2002;11:115–132.

    PubMed  CAS  Google Scholar 

  2. Prawitt D, Brixel L, Spangenberg C, et al. RNAi knock-down mice: An emerging technology for post-genomic functional genetics. Cytogenet Genome Res 2004;105:412–421.

    PubMed  CAS  Google Scholar 

  3. Nagy A, Gertsenstein M, Vintersten R, Behringer M. Manipulating the Mouse Embryo—A Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Press, 2002.

    Google Scholar 

  4. Sung YH, Song J, Lee HW. Functional genomics approach using mice. J Biochem Mol Biol 2004;37:122–132.

    PubMed  CAS  Google Scholar 

  5. Ristevski S. Making better transgenic models: Conditional, temporal, and spatial approaches. Mol Biotechnol 2005;29:153–163.

    PubMed  CAS  Google Scholar 

  6. Glaser S, Anastassiadis K, Stewart AF. Current issues in mouse genome engineering. Nat Genet 2005;37:1187–1193.

    PubMed  CAS  Google Scholar 

  7. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 1980;77:7380–7384.

    PubMed  CAS  Google Scholar 

  8. Rulicke T. Pronuclear microinjection of mouse zygotes. Methods Mol Biol 2004;254:165–194.

    PubMed  Google Scholar 

  9. Efrat S, Leiser M, Wu YJ, et al. Ribozyme-mediated attenuation of pancreatic beta-cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion. Proc Natl Acad Sci USA 1994;91:2051–2055.

    PubMed  CAS  Google Scholar 

  10. Erickson RP. Antisense transgenics in animals. Methods 1999;18:304–310.

    PubMed  CAS  Google Scholar 

  11. Kashani-Sabet M, Liu Y, Fong S, et al. Identification of gene function and functional pathways by systemic plasmid-based ribozyme targeting in adult mice. Proc Natl Acad Sci USA 2002;99:3878–3883.

    PubMed  CAS  Google Scholar 

  12. Larsson S, Hotchkiss G, Andang M, et al. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme. Nucleic Acids Res 1994;22:2242–2248.

    PubMed  CAS  Google Scholar 

  13. Szulc J, Wiznerowicz M, Sauvain MO, Trono D, Aebischer P. A versatile tool for conditional gene expression and knockdown. Nat Methods 2006;3:109–116.

    PubMed  CAS  Google Scholar 

  14. Ventura A, Meissner A, Dillon CP, et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci USA 2004;101:10380–10385.

    PubMed  CAS  Google Scholar 

  15. Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA 2005;102:13212–13217.

    PubMed  CAS  Google Scholar 

  16. Sanchez MJ, Bockamp EO, Miller J, Gambardella L, Green AR. Selective rescue of early haematopoietic progenitors in Scl(-/-) mice by expressing Scl under the control of a stem cell enhancer. Development 2001;128:4815–4827.

    PubMed  CAS  Google Scholar 

  17. Navas PA, Swank RA, Yu M, Peterson KR, Stamatoyannopoulos G. Mutation of a transcriptional motif of a distant regulatory element reduces the expression of embryonic and fetal globin genes. Hum Mol Genet 2003;12:2941–2948.

    PubMed  CAS  Google Scholar 

  18. Sinclair AM, Gottgens B, Barton LM, et al. Distinct 5′ SCL enhancers direct transcription to developing brain, spinal cord, and endothelium: Neural expression is mediated by GATA factor binding sites. Dev Biol 1999;209:128–142.

    PubMed  CAS  Google Scholar 

  19. Wilson C, Bellen HJ, Gehring WJ. Position effects on eukaryotic gene expression. Annu Rev Cell Biol 1990;6:679–714.

    PubMed  CAS  Google Scholar 

  20. Bronson SK, Plaehn EG, Kluckman KD, Hagaman JR, Maeda N, Smithies O. Single-copy transgenic mice with chosen-site integration. Proc Natl Acad Sci USA 1996;93:9067–9072.

    PubMed  CAS  Google Scholar 

  21. Giraldo P, Rival-Gervier S, Houdebine LM, Montoliu L. The potential benefits of insulators on heterologous constructs in transgenic animals. Transgenic Res 2003;12:751–755.

    PubMed  CAS  Google Scholar 

  22. Sparwasser T, Gong S, Li JY, Eberl G. General method for the modification of different BAC types and the rapid generation of BAC transgenic mice. Genesis 2004;38:39–50.

    PubMed  CAS  Google Scholar 

  23. Giraldo P, Montoliu L. Size matters: Use of YACs, BACs and PACs in transgenic animals. Transgenic Res 2001;10:83–103.

    PubMed  CAS  Google Scholar 

  24. Gong S, Yang XW, Li C, Heintz N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res 2002;12:1992–1998.

    PubMed  CAS  Google Scholar 

  25. Lee EC, Yu D, Martinez de Velasco J, et al. A highly efficient Escherichia colibased chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 2001;73:56–65.

    PubMed  CAS  Google Scholar 

  26. Wang J, Sarov M, Rientjes J, et al. An improved recombineering approach by adding RecA to lambda Red recombination. Mol Biotechnol 2006;32:43–53.

    PubMed  Google Scholar 

  27. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 2005;33:e36.

    PubMed  Google Scholar 

  28. Rijkers T, Peetz A, Ruther U. Insertional mutagenesis in transgenic mice. Transgenic Res 1994;3:203–215.

    PubMed  CAS  Google Scholar 

  29. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–156.

    PubMed  CAS  Google Scholar 

  30. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78:7634–7638.

    PubMed  CAS  Google Scholar 

  31. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 1985;317: 230–234.

    PubMed  CAS  Google Scholar 

  32. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987;51: 503–512.

    PubMed  CAS  Google Scholar 

  33. Borrelli E, Heyman R, Hsi M, Evans RM. Targeting of an inducible toxic phenotype in animal cells. Proc Natl Acad Sci USA 1988;85: 7572–7576.

    PubMed  CAS  Google Scholar 

  34. Chen YT, Bradley A. A new positive/negative selectable marker, puDeltatk, for use in embryonic stem cells. Genesis 2000;28: 31–35.

    PubMed  CAS  Google Scholar 

  35. Yanagawa Y, Kobayashi T, Ohnishi M, et al. Enrichment and efficient screening of ES cells containing a targeted mutation: The use of DT-A gene with the polyadenylation signal as a negative selection maker. Transgenic Res 1999;8:215–221.

    PubMed  CAS  Google Scholar 

  36. Nord AS, Chang PJ, Conklin BR, et al. The International Gene Trap Consortium Website: A portal to all publicly available gene trap cell lines in mouse. Nucleic Acids Res 2006;34:D642–648.

    PubMed  CAS  Google Scholar 

  37. Phillips TJ, Hen R, Crabbe JC. Complications associated with genetic background effects in research using knockout mice. Psychopharmacology (Berl) 1999;147:5–7.

    CAS  Google Scholar 

  38. Sanford LP, Kallapur S, Ormsby I, Doetschman T. Influence of genetic background on knockout mouse phenotypes. Methods Mol Biol 2001;158:217–225.

    PubMed  CAS  Google Scholar 

  39. Bowers BJ, Owen EH, Collins AC, Abeliovich A, Tonegawa S, Wehner JM. Decreased ethanol sensitivity and tolerance development in gamma-protein kinase C null mutant mice is dependent on genetic background. Alcohol Clin Exp Res 1999;23:387–397.

    PubMed  CAS  Google Scholar 

  40. Sigmund CD. Viewpoint: Are studies in genetically altered mice out of control? Arterioscler Thromb Vasc Biol 2000;20:1425–1429.

    PubMed  CAS  Google Scholar 

  41. Garcia-Otin AL, Guillou F. Mammalian genome targeting using site-specific recombinases. Front Biosci 2006;11:1108–1136.

    PubMed  CAS  Google Scholar 

  42. Mallo M. Controlled gene activation and inactivation in the mouse. Front Biosci 2006;11:313–327.

    PubMed  CAS  Google Scholar 

  43. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992;89:5547–5551.

    PubMed  CAS  Google Scholar 

  44. Baron U, Freundlieb S, Gossen M, Bujard H. Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res 1995;23:3605–3606.

    PubMed  CAS  Google Scholar 

  45. Eger K, Hermes M, Uhlemann K, et al. 4-Epidoxycycline: An alternative to doxycycline to control gene expression in conditional mouse models. Biochem Biophys Res Commun 2004;323:979–986.

    PubMed  CAS  Google Scholar 

  46. Furth PA, St Onge L, Boger H, et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci USA 1994;91:9302–9306.

    PubMed  CAS  Google Scholar 

  47. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science 1995;268:1766–1769.

    PubMed  CAS  Google Scholar 

  48. Hasan MT, Schonig K, Berger S, Graewe W, Bujard H. Long-term, noninvasive imaging of regulated gene expression in living mice. Genesis 2001;29:116–122.

    PubMed  CAS  Google Scholar 

  49. Kistner A, Gossen M, Zimmermann F, et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci USA 1996;93:10933–10938.

    PubMed  CAS  Google Scholar 

  50. Freundlieb S, Schirra-Muller C, Bujard H. A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J Gene Med 1999;1:4–12.

    PubMed  CAS  Google Scholar 

  51. Bockamp E, Christel C, Hameyer D, et al. Generation and characterization of tTS-H4: a novel transcriptional repressor that is compatible with the reverse tetracycline-controlled TET-ON system. J Gene Med 2007;9:308–318.

    PubMed  CAS  Google Scholar 

  52. Zhu Z, Ma B, Homer RJ, Zheng T, Elias JA. Use of the tetracyclinecontrolled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J Biol Chem 2001; 276:25222–25229.

    PubMed  CAS  Google Scholar 

  53. Hayakawa T, Yusa K, Kouno M, Takeda J, Horie K. Bloom’s syndrome gene-deficient phenotype in mouse primary cells induced by a modified tetracycline-controlled trans-silencer. Gene 2006; 369:80–89.

    PubMed  CAS  Google Scholar 

  54. Forster K, Helbl V, Lederer T, Urlinger S, Wittenburg N, Hillen W. Tetracycline-inducible expression systems with reduced basal activity in mammalian cells. Nucleic Acids Res 1999;27:708–710.

    PubMed  CAS  Google Scholar 

  55. Uchida S, Sakai S, Furuichi T, et al. Tight regulation of transgene expression by tetracycline-dependent activator and repressor in brain. Genes Brain Behav 2006;5:96–106.

    PubMed  CAS  Google Scholar 

  56. Pluta K, Luce MJ, Bao L, Agha-Mohammadi S, Reiser J. Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. J Gene Med 2005;7:803–817.

    PubMed  CAS  Google Scholar 

  57. Krueger C, Danke C, Pfleiderer K, et al. A gene regulation system with four distinct expression levels. J Gene Med 2006;8(8): 1037–1047.

    PubMed  CAS  Google Scholar 

  58. Izumi M, Gilbert DM. Homogeneous tetracycline-regulatable gene expression in mammalian fibroblasts. J Cell Biochem 1999; 76:280–289.

    PubMed  CAS  Google Scholar 

  59. Akagi K, Kanai M, Saya H, Kozu T, Berns A. A novel tetracyclinedependent transactivator with E2F4 transcriptional activation domain. Nucleic Acids Res 2001;29:E23.

    PubMed  CAS  Google Scholar 

  60. Baron U, Gossen M, Bujard H. Tetracycline-controlled transcription in eukaryotes: Novel transactivators with graded transactivation potential. Nucleic Acids Res 1997;25:2723–2729.

    PubMed  CAS  Google Scholar 

  61. Urlinger S, Helbl V, Guthmann J, Pook E, Grimm S, Hillen W. The p65 domain from NF-kappaB is an efficient human activator in the tetracycline-regulatable gene expression system. Gene 2000;247: 103–110.

    PubMed  CAS  Google Scholar 

  62. Krueger C, Berens C, Schmidt A, Schnappinger D, Hillen W. Single-chain Tet transregulators. Nucleic Acids Res 2003;31:3050–3056.

    PubMed  CAS  Google Scholar 

  63. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W. Exploring the sequence space for tetracycline-dependent transcriptional activators: Novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 2000;97:7963–7968.

    PubMed  CAS  Google Scholar 

  64. Lakso M, Sauer B, Mosinger B Jr, et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 1992;89:6232–6236.

    PubMed  CAS  Google Scholar 

  65. Orban PC, Chui D, Marth JD. Tissue and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 1992;89: 6861–6865.

    PubMed  CAS  Google Scholar 

  66. Hamilton DL, Abremski K. Site-specific recombination by the bacteriophage P1 lox-Cre system. Cre-mediated synapsis of two lox sites. J Mol Biol 1984;178:481–486.

    PubMed  CAS  Google Scholar 

  67. van der Weyden L, Adams DJ, Bradley A. Tools for targeted manipulation of the mouse genome. Physiol Genomics 2002;11:133–164.

    PubMed  Google Scholar 

  68. Branda CS, Dymecki SM. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell 2004;6:7–28.

    PubMed  CAS  Google Scholar 

  69. Rodriguez CI, Buchholz F, Galloway J, et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 2000;25:139–140.

    PubMed  CAS  Google Scholar 

  70. Shimshek DR, Jensen V, Celikel T, et al. Forebrain-specific glutamate receptor B deletion impairs spatial memory but not hippocampal field long-term potentiation. J Neurosci 2006;26: 8428–8440.

    PubMed  CAS  Google Scholar 

  71. Schonig K, Schwenk F, Rajewsky K, Bujard H. Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 2002;30:e134.

    PubMed  Google Scholar 

  72. Brocard J, Warot X, Wendling O, et al. Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proc Natl Acad Sci USA 1997;94:14559–14563.

    PubMed  CAS  Google Scholar 

  73. Shimshek DR, Kim J, Hubner MR, et al. Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 2002;32:19–26.

    PubMed  CAS  Google Scholar 

  74. Buchholz F, Stewart AF. Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol 2001; 19: 1047–1052.

    PubMed  CAS  Google Scholar 

  75. Koresawa Y, Miyagawa S, Ikawa M, et al. A new Cre recombinase gene based on optimal codon usage in mammals: A powerful material for organ-specific gene targeting. Transplant Proc 2000;32: 2516–2517.

    PubMed  CAS  Google Scholar 

  76. Santoro SW, Schultz PG. Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci USA 2002;99:4185–4190.

    PubMed  CAS  Google Scholar 

  77. Vooijs M, Jonkers J, Berns A. A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep 2001;2:292–297.

    PubMed  CAS  Google Scholar 

  78. Meister G, Tuschl T. Mechanisms of gene silencing by doublestranded RNA. Nature 2004; 31:343–349.

    Google Scholar 

  79. Tomari Y, Zamore PD. Perspective: Machines for RNAi. Genes Dev 2005;19:517–529.

    PubMed  CAS  Google Scholar 

  80. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494–498.

    PubMed  CAS  Google Scholar 

  81. Hasuwa H, Kaseda K, Einarsdottir T, Okabe M. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 2002;532:227–230.

    PubMed  CAS  Google Scholar 

  82. Sandy P, Ventura A, Jacks T. Mammalian RNAi: A practical guide. Biotechniques 2005;39:215–224.

    PubMed  CAS  Google Scholar 

  83. Lu PY, Xie F, Woodle MC. In vivo application of RNA interference: From functional genomics to therapeutics. Adv Genet 2005;54: 117–142.

    PubMed  Google Scholar 

  84. Coumoul X, Deng CX. RNAi in mice: A promising approach to decipher gene functions in vivo. Biochimie 2006;88:637–643.

    PubMed  CAS  Google Scholar 

  85. Wiznerowicz M, Szulc J, Trono D. Tuning silence: Conditional systems for RNA interference. Nat Methods 2006;3:682–688.

    PubMed  CAS  Google Scholar 

  86. Hemann MT, Fridman JS, Zilfou JT, et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 2003;33:396–400.

    PubMed  CAS  Google Scholar 

  87. Rosenbauer F, Wagner K, Kutok JL, et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 2004;36:624–630.

    PubMed  CAS  Google Scholar 

  88. Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003;21:635–637.

    PubMed  CAS  Google Scholar 

  89. Huppi K, Martin SE, Caplen NJ. Defining and assaying RNAi in mammalian cells. Mol Cell 2005;17:1–10.

    PubMed  CAS  Google Scholar 

  90. Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441:537–541.

    PubMed  CAS  Google Scholar 

  91. Matsuda T, Cepko CL. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 2004;101:16–22.

    PubMed  CAS  Google Scholar 

  92. Hommel JD, Sears RM, Georgescu D, Simmons DL, DiLeone RJ. Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med 2003;9:1539–1544.

    PubMed  CAS  Google Scholar 

  93. Xia H, Mao Q, Paulson HL, Davidson BL. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002;20:1006–1010.

    PubMed  CAS  Google Scholar 

  94. Kishida T, Asada H, Gojo S, et al. Sequence-specific gene silencing in murine muscle induced by electroporation-mediated transfer of short interfering RNA. J Gene Med 2004;6:105–110.

    PubMed  CAS  Google Scholar 

  95. Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003;9:347–351.

    PubMed  CAS  Google Scholar 

  96. McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 2003;21: 639–644.

    PubMed  CAS  Google Scholar 

  97. Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432:173–178.

    PubMed  CAS  Google Scholar 

  98. de Fougerolles A, Manoharan M, Meyers R, Vornlocher HP. RNA interference in vivo: Toward synthetic small inhibitory RNA-based therapeutics. Methods Enzymol 2005;392:278–296.

    PubMed  Google Scholar 

  99. Leonard JN, Schaffer DV. Antiviral RNAi therapy: Emerging approaches for hitting a moving target. Gene Ther 2006; 13: 532–540.

    PubMed  CAS  Google Scholar 

  100. Kunath T, Gish G, Lickert H, Jones N, Pawson T, Rossant J. Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat Biotechnol 2003;21:559–561.

    PubMed  CAS  Google Scholar 

  101. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003;33:401–406.

    PubMed  CAS  Google Scholar 

  102. Tiscornia G, Singer O, Ikawa M, Verma IM. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 2003;100: 1844–1848.

    PubMed  CAS  Google Scholar 

  103. Coumoul X, Shukla V, Li C, Wang RH, Deng CX. Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res 2005;33:e102.

    PubMed  Google Scholar 

  104. Chang HS, Lin CH, Chen YC, Yu WC. Using siRNA technique to generate transgenic animals with spatiotemporal and conditional gene knockdown. Am J Pathol 2004;165:1535–1541.

    PubMed  CAS  Google Scholar 

  105. Xia XG, Zhou H, Samper E, Melov S, Xu Z. Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice. PLoS Genet 2006;2:e10.

    PubMed  Google Scholar 

  106. Dickins RA, Hemann MT, Zilfou JT, et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 2005;37:1289–1295.

    PubMed  CAS  Google Scholar 

  107. Moffat J, Grueneberg DA, Yang X, et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006;124:1283–1298.

    PubMed  CAS  Google Scholar 

  108. Silva JM, Li MZ, Chang K, et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 2005;37:1281–1288.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sprengel, R., Eshkind, L., Hengstler, J., Bockamp, E. (2008). Improved Models for Animal Research. In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics