Skip to main content

Modeling Cognitive and Neurodegenerative Disorders in Drosophila melanogaster

  • Chapter
  • 7513 Accesses

Abstract

Significant conservation in cognitive and neurodevelopmental mechanisms exist between Drosophila and mammals. In addition, while mechanisms of aging are relatively well conserved, Drosophila age much faster than mammals. Thus Drosophila are an ideal organism in which to study cognitive and neurodegenerative diseases. Powerful genetic techniques exist that allow genes to be disrupted and overexpressed easily. Phenotypes observed from these mutants can then be used to screen for genetic modifiers to elucidate pathways involved in disease pathology. Here we describe recent advances obtained from Drosophila models for five diseases, neurofibromatosis 1, fragile X syndrome, Alzheimer’s disease, tauopathies, and Parkinson’s disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Margulies C, Tully T, Dubnau J. Deconstructing memory in Drosophila. Curr Biol 2005;15:R700–713.

    Article  CAS  Google Scholar 

  2. Mehren JE, Ejima A, Griffith LC. Unconventional sex: Fresh approaches to courtship learning. Curr Opin Neurobiol 2004;14:745–750.

    Article  PubMed  CAS  Google Scholar 

  3. Tully T, et al. A return to genetic dissection of memory in Drosophila. Cold Spring Harb Symp Quant Biol 1996;61:207–218.

    PubMed  CAS  Google Scholar 

  4. Tully T, et al. Genetic dissection of consolidated memory in Drosophila. Cell 1994;79:35–47.

    Article  PubMed  CAS  Google Scholar 

  5. Yin JC, Tully T. CREB and the formation of long-term memory. Curr Opin Neurobiol 1996;6:264–268.

    Article  PubMed  CAS  Google Scholar 

  6. Liebl FL, et al. Genome-wide P-element screen for Drosophila synaptogenesis mutants. J Neurobiol 2006;66:332–347.

    Article  PubMed  CAS  Google Scholar 

  7. Vijayakrishnan N, Broadie K. Temperature-sensitive paralytic mutants: Insights into the synaptic vesicle cycle. Biochem Soc Trans 2006;34:81–87.

    Article  PubMed  CAS  Google Scholar 

  8. Huang FD, et al. Rolling blackout is required for synaptic vesicle exocytosis. J Neurosci 2006;26:2369–2379.

    Article  PubMed  CAS  Google Scholar 

  9. Kidokoro Y. Roles of SNARE proteins and synaptotagmin I in synaptic transmission: Studies at the Drosophila neuromuscular synapse. Neurosignals 2003;12:13–30.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang YQ, et al. Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 2001;107:591–603.

    Article  PubMed  CAS  Google Scholar 

  11. Tong J, et al. Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci 2002;5:95–96.

    Article  PubMed  CAS  Google Scholar 

  12. Pan L, et al. The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation. Curr Biol 2004; 14:1863–1870.

    Article  PubMed  CAS  Google Scholar 

  13. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science 2003;299:1346–1351.

    Article  PubMed  CAS  Google Scholar 

  14. Horiuchi J, Saitoe M. Can flies shed light on our own age-related memory impairment? Ageing Res Rev 2005;4:83–101.

    Article  PubMed  Google Scholar 

  15. Pletcher SD, Libert S, Skorupa D. Flies and their golden apples: The effect of dietary restriction on Drosophila aging and age-dependent gene expression. Ageing Res Rev 2005;4:451–480.

    Article  PubMed  CAS  Google Scholar 

  16. Longo VD, Finch CE. Evolutionary medicine: From dwarf model systems to healthy centenarians? Science 2003;299:1342–1346.

    Article  PubMed  CAS  Google Scholar 

  17. Fortini ME, et al. A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol 2000;150:F23–30.

    Article  Google Scholar 

  18. Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993;118:401–415.

    PubMed  CAS  Google Scholar 

  19. Mao Z, et al. Pharmacogenetic rescue in time and space of the rutabaga memory impairment by using Gene-Switch. Proc Natl Acad Sci USA 2004; 101:198–203.

    Article  PubMed  CAS  Google Scholar 

  20. Osterwalder T, et al. A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci USA 2001;98:12596–12601.

    Article  PubMed  CAS  Google Scholar 

  21. Rorth P, et al. Systematic gain-of-function genetics in Drosophila. Development 1998;125:1049–1057.

    PubMed  CAS  Google Scholar 

  22. Hay BA, Maile R, Rubin GM. P element insertion-dependent gene activation in the Drosophila eye. Proc Natl Acad Sci USA 1997; 94:5195–5200.

    Article  PubMed  CAS  Google Scholar 

  23. Manev H, Dimitrijevic N, Dzitoyeva S. Techniques: Fruit flies as models for neuropharmacological research. Trends Pharmacol Sci 2003;24:41–43.

    Article  PubMed  CAS  Google Scholar 

  24. Xu GF, et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 1990;62:599–608.

    Article  PubMed  CAS  Google Scholar 

  25. The I, et al. Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 1997;276:791–794.

    Article  PubMed  CAS  Google Scholar 

  26. Acosta MT, Gioia GA, Silva AJ. Neurofibromatosis type 1: New insights into neurocognitive issues. Curr Neurol Neurosci Rep 2006;6:136–143.

    Article  PubMed  CAS  Google Scholar 

  27. Zhong Y. Mediation of PACAP-like neuropeptide transmission by coactivation of Ras/Raf and cAMP signal transduction pathways in Drosophila. Nature 1995;375:588–592.

    Article  PubMed  CAS  Google Scholar 

  28. Guo HF, et al. Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science 1997;276:795–798.

    Article  PubMed  CAS  Google Scholar 

  29. Guo HF, et al. A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 2000;403:895–898.

    Article  PubMed  CAS  Google Scholar 

  30. Fieber LA. Ionic currents in normal and neurofibromatosis type 1-affected human Schwann cells: Induction of tumor cell K current in normal Schwann cells by cyclic AMP. J Neurosci Res 1998;54:495–506.

    Article  PubMed  CAS  Google Scholar 

  31. Dasgupta B, Dugan LL, Gutmann DH. The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclaseactivating polypeptide-mediated signaling in astrocytes. J Neurosci 2003;23:8949–8954.

    PubMed  CAS  Google Scholar 

  32. Zarnescu DC, et al. Come FLY with us: Toward understanding fragile X syndrome. Genes Brain Behav 2005;4:385–392.

    Article  PubMed  CAS  Google Scholar 

  33. Nimchinsky EA, Oberlander AM, Svoboda K. Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 2001;21:5139–5146.

    PubMed  CAS  Google Scholar 

  34. Grossman AW, et al. Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. J Neurosci 2006;26: 7151–7155.

    Article  PubMed  CAS  Google Scholar 

  35. Darnell JC, Mostovetsky O, Darnell RB. FMRP RNA targets: Identification and validation. Genes Brain Behav 2005;4:341–349.

    Article  PubMed  CAS  Google Scholar 

  36. Ule J, Darnell RB. RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr Opin Neurobiol 2006;16:102–110.

    Article  PubMed  CAS  Google Scholar 

  37. Wan L, et al. Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein. Mol Cell Biol 2000;20:8536–8547.

    Article  PubMed  CAS  Google Scholar 

  38. Darnell JC, et al. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 2001;107:489–499.

    Article  PubMed  CAS  Google Scholar 

  39. Brown V, et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 2001;107:477–487.

    Article  PubMed  CAS  Google Scholar 

  40. Reeve SP, et al. The Drosophila fragile X mental retardation protein controls actin dynamics by directly regulating profilin in the brain. Curr Biol 2005;15:1156–1163.

    Article  PubMed  CAS  Google Scholar 

  41. Lee A, et al. Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 2003;130:5543–5552.

    Article  PubMed  CAS  Google Scholar 

  42. Schenck A, et al. A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc Natl Acad Sci USA 2001;98:8844–8849.

    Article  PubMed  CAS  Google Scholar 

  43. Kobayashi K, et al. p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J Biol Chem 1998;273:291–295.

    Article  PubMed  CAS  Google Scholar 

  44. Schenck A, et al. CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 2003;38:887–898.

    Article  PubMed  CAS  Google Scholar 

  45. Eden S, et al. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 2002;418:790–793.

    Article  PubMed  CAS  Google Scholar 

  46. Zarnescu DC, et al. Fragile X protein functions with lgl and the par complex in flies and mice. Dev Cell 2005;8:43–52.

    Article  PubMed  CAS  Google Scholar 

  47. Wirtz-Peitz F, Knoblich JA. Lethal giant larvae take on a life of their own. Trends Cell Biol 2006;16:234–241.

    Article  PubMed  CAS  Google Scholar 

  48. Malenka RC, Bear MF. LTP and LTD: An embarrassment of riches. Neuron 2004;44:5–21.

    Article  PubMed  CAS  Google Scholar 

  49. Huber KM, Roder JC, Bear MF. Chemical induction of mGluR5-and protein synthesis-dependent long-term depression in hippocampal area CA1. J Neurophysiol 2001;86:321–325.

    PubMed  CAS  Google Scholar 

  50. Huber KM, et al. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 2002;99:7746–7750.

    Article  PubMed  CAS  Google Scholar 

  51. Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci 2004;27:370–377.

    Article  PubMed  CAS  Google Scholar 

  52. Dockendorff TC, et al. Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 2002;34:973–984.

    Article  PubMed  CAS  Google Scholar 

  53. McBride SM, et al. Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 2005;45:753–764.

    Article  PubMed  CAS  Google Scholar 

  54. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 2006;368:387–403.

    Article  PubMed  CAS  Google Scholar 

  55. Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell 2005;120:545–555.

    Article  PubMed  CAS  Google Scholar 

  56. Sisodia SS, St George-Hyslop PH. gamma-Secretase, Notch, Abeta and Alzheimer’s disease: Where do the presenilins fit in? Nat Rev Neurosci 2002;3:281–290.

    Article  PubMed  CAS  Google Scholar 

  57. Greeve I, et al. Age-dependent neurodegeneration and Alzheimeramyloid plaque formation in transgenic Drosophila. J Neurosci 2004;24:3899–3906.

    Article  PubMed  CAS  Google Scholar 

  58. Iijima K, et al. Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: A potential model for Alzheimer’s disease. Proc Natl Acad Sci USA 2004;101:6623–6628.

    Article  PubMed  CAS  Google Scholar 

  59. Crowther DC, et al. Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience 2005;132:123–135.

    Article  PubMed  CAS  Google Scholar 

  60. Goedert M, Jakes R. Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta 2005;1739:240–250.

    PubMed  CAS  Google Scholar 

  61. Yen SH, et al. Alzheimer neurofibrillary lesions: Molecular nature and potential roles of different components. Neurobiol Aging 1995;16:381–387.

    Article  PubMed  CAS  Google Scholar 

  62. Wittmann CW, et al. Tauopathy in Drosophila: Neurodegeneration without neurofibrillary tangles. Science 2001;293:711–714.

    Article  PubMed  CAS  Google Scholar 

  63. Jackson GR, et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 2002;34:509–519.

    Article  PubMed  CAS  Google Scholar 

  64. Shulman JM, Feany MB. Genetic modifiers of tauopathy in Drosophila. Genetics 2003;165:1233–1242.

    PubMed  CAS  Google Scholar 

  65. Nishimura I, Yang Y, Lu B. PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 2004;116:671–682.

    Article  PubMed  CAS  Google Scholar 

  66. Doglio LE, et al. gamma-cleavage-independent functions of presenilin, nicastrin, and Aph-1 regulate cell-junction organization and prevent tau toxicity in vivo. Neuron 2006;50:359–375.

    Article  PubMed  CAS  Google Scholar 

  67. Karsten SL, et al. A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of tauinduced neurodegeneration. Neuron 2006;51:549–560.

    Article  PubMed  CAS  Google Scholar 

  68. Spillantini MG, et al. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 1998;95:6469–6473.

    Article  PubMed  CAS  Google Scholar 

  69. Spillantini MG, Goedert M. The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann NY Acad Sci 2000;920:16–27.

    Article  PubMed  CAS  Google Scholar 

  70. Mezey E, et al. Alpha synuclein is present in Lewy bodies in sporadic Parkinson’s disease. Mol Psychiatry 1998;3:493–499.

    Article  PubMed  CAS  Google Scholar 

  71. Polymeropoulos MH, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997;276: 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  72. Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature 2000;404:394–398.

    Article  PubMed  CAS  Google Scholar 

  73. Moore DJ, et al. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 2005;28:57–87.

    Article  PubMed  CAS  Google Scholar 

  74. Park J, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006;441:1157–1161.

    Article  PubMed  CAS  Google Scholar 

  75. Clark IE, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006;441: 1162–1166.

    Article  PubMed  CAS  Google Scholar 

  76. Yang Y, et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci USA 2006;103: 10793–10798.

    Article  PubMed  CAS  Google Scholar 

  77. Wang D, et al. Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila. Proc Natl Acad Sci USA 2006;103: 13520–13525.

    Article  PubMed  CAS  Google Scholar 

  78. Greene JC, et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 2003;100:4078–4083.

    Article  PubMed  CAS  Google Scholar 

  79. Auluck PK, et al. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 2002; 295:865–868.

    Article  PubMed  CAS  Google Scholar 

  80. Auluck PK, Meulener MC, Bonini NM. Mechanisms of suppression of α-synuclein neurotoxicity by geldanamycin in Drosophila. J Biol Chem 2005;280:2873–2878.

    Article  PubMed  CAS  Google Scholar 

  81. Yang Y, et al. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 2003;37: 911–924.

    Article  PubMed  CAS  Google Scholar 

  82. Tamura T, et al. Aging specifically impairs amnesiac-dependent memory in Drosophila. Neuron 2003;40:1003–1011.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Horiuchi, J., Saitoe, M. (2008). Modeling Cognitive and Neurodegenerative Disorders in Drosophila melanogaster . In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics