Skip to main content

Chromatin Immunoprecipitation to Study the Binding of Proteins to the Adenovirus Genome In Vivo

  • Protocol
Adenovirus Methods and Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 131))

Abstract

The encapsidation of adenovirus DNA into virus particles depends on cis-acting sequences located at the left end of the viral genome. Repeated DNA sequences in the packaging domain contribute to viral DNA encapsidation, and several viral proteins bind to these repeats when analyzed using in vitro DNAprotein-binding assays. This chapter describes a chromatin immunoprecipitation approach to study the binding of viral proteins to packaging sequences in vivo. The technique is easily adaptable to study the interaction of any viral or cellular protein to Ad DNA or to cellular genomic DNA sequences. The assay permits accurate quantification over a wide range of DNA concentrations. The use of formaldehyde cross-linking to stabilize DNAprotein and proteinprotein complexes formed in vivo allows the identification of macromolecular complexes found in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostapchuk, P. and Hearing, P. (2003) Regulation of adenovirus packaging. Curr. Top. Microbiol. Immunol. 272, 165ā€“185.

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Schmid, S. I. and Hearing, P. (1997) Bipartite structure and functional independence of adenovirus type 5 packaging elements. J. Virol. 71, 3375ā€“3384.

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Schmid, S. I. and Hearing, P. (1998) Cellular components interact with adenovirus type 5 minimal DNA packaging domains. J. Virol. 72, 6339ā€“6347.

    CASĀ  PubMedĀ  Google ScholarĀ 

  4. Gustin, K. E. and Imperiale, M. J. (1998) Encapsidation of viral DNA requires the adenovirus L1 52/55-kilodalton protein. J. Virol. 72, 7860ā€“7870.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Hasson, T. B., Soloway, P. D., Ornelles, D. A., Doerfler, W., and Shenk, T. (1989) Adenovirus L1 52-and 55-kilodalton proteins are required for assembly of virions. J. Virol. 63, 3612ā€“3621.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Zhang, W., Low, J. A., Christensen, J. B., and Imperiale, M. J. (2001) Role for the adenovirus IVa2 protein in packaging of viral DNA. J. Virol. 75, 10,446ā€“10,454.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Zhang, W. and Imperiale, M. J. (2003) Requirement of the adenovirus IVa2 protein for virus assembly. J. Virol. 77, 3586ā€“3594.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Gustin, K. E., Lutz, P., and Imperiale, M. J. (1996) Interaction of the adenovirus L1 52/55-kilodalton protein with the IVa2 gene product during infection. J. Virol. 70, 6463ā€“6467.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Zhang, W. and Imperiale, M. J. (2000) Interaction of the adenovirus IVa2 protein with viral packaging sequences. J. Virol. 74, 2687ā€“2693.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Ostapchuk, P., Yang, J., Auffarth, E., and Hearing, P. (2005) Functional interaction of the adenovirus IVa2 protein with adenovirus type 5 packaging sequences. J.Virol. 79, 2831ā€“2838.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Schepers, A., Ritzi, M., Bousset, K., et al. (2001) Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J. 20, 4588ā€“602.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Wells, J., Graveel, C. R., Bartley, S. M., Madore, S. J., and Farnham, P. J. (2002) The identification of E2F1-specific target genes. Proc. Natl. Acad. Sci. USA 99, 3890ā€“3895.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Spector, D. J., Johnson, J. S., Baird, N. L., and Engel, D. A. (2003) Adenovirus type 5 DNA-protein complexes from formaldehyde cross-linked cells early after infection. Virology 312, 204ā€“212.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Schiedner, G., Hertel, S., and Kochanek, S. (2000) Efficient transformation of primary human amniocytes by E1 functions of Ad5: generation of new cell lines for adenoviral vector production. Hum. Gene Ther. 11, 2105ā€“2116.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Yang, J., Hearing, P. (2007). Chromatin Immunoprecipitation to Study the Binding of Proteins to the Adenovirus Genome In Vivo. In: Wold, W.S.M., Tollefson, A.E. (eds) Adenovirus Methods and Protocols. Methods in Molecular Medicineā„¢, vol 131. Humana Press. https://doi.org/10.1007/978-1-59745-277-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-277-9_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-901-7

  • Online ISBN: 978-1-59745-277-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics