Skip to main content

How to Use Dynamic Light Scattering to Improve the Likelihood of Growing Macromolecular Crystals

  • Protocol
Macromolecular Crystallography Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 363))

Abstract

Dynamic light scattering (DLS) has become one of the most useful diagnostic tools for crystallization. The main purpose of using DLS in crystal screening is to help the investigator understand the size distribution, stability, and aggregation state of macromolecules in solution. It can also be used to understand how experimental variables influence aggregation. With commercially available instruments, DLS is easy to perform, and most of the sample is recoverable. Most usefully, the homogeneity or monodispersity of a sample, as measured by DLS, can be predictive of crystallizability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zulauf, M. and D’Arcy, A. (1992) Light scattering of proteins as a criterion for crystallization. J. Cryst. Growth 122, 102–106.

    Article  CAS  Google Scholar 

  2. D’Arcy, A. (1994) Crystallizing proteins: a rational approach. Acta Cryst. D50, 469–471.

    Google Scholar 

  3. Wilson, W. W. (2003) Light scattering as a diagnostic for protein crystal growth: a practical approach. J. Structural Biol. 142, 56–65.

    Article  Google Scholar 

  4. Bergfors, T. M. (1999) Protein Crystallization Techniques, Strategies and, Tips. International University Line, La Jolla, CA.

    Google Scholar 

  5. Ferré-D’Amaré, A. R. and Burley, S. K. (1997) Dynamic light scattering in evaluating crystallizability of macromolecules. Meth. Enzymol. 276, 157–166.

    Article  Google Scholar 

  6. Ranatunga, W., Jackson, D., Lloyd, J. A., Forget, A. L., Knight, K. L., and Borgstahl, G. E. O. (2001) Human Rad52 exhibits two modes of self-association. J. Biol. Chem. 276, 15,876–15,880.

    Article  CAS  PubMed  Google Scholar 

  7. Mueser, T. C., Rogers, P. H., and Arnone, A. (2000) Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin. Biochemistry 39, 15,353–15,364.

    Article  CAS  PubMed  Google Scholar 

  8. Collins, B. K., Tomanicek, S. J., Lyamicheva, N., Kaiser, M. W., and Mueser, T. C. (2004) A preliminary solubility screen used to improve crystallization trials. Crystallization and preliminary X-ray structure determination of Aeropyrum pernix Flap Endonuclease-1. Acta Cryst. D60, 1674–1678.

    CAS  Google Scholar 

  9. Jackson, D., Dhar, K., Wahl, J. K., Wold, M. S., and Borgstahl, G. E. (2002) Analysis of the human replication protein A:Rad52 complex: evidence for crosstalk between RPA32, RPA70, Rad52 and DNA. J. Mol. Biol. 321, 133–148.

    Article  CAS  PubMed  Google Scholar 

  10. Habel, J. E., Ohren, J. F., and Borgstahl, G. E. O. (2001) Dynamic light scattering analysis of full-length, human RPA14/32 dimer: purification, crystallization and self-association. Acta Cryst. D D57, 254–259.

    Article  CAS  Google Scholar 

  11. Dale, G. E., Oefner, C., and D’Arcy, A. (2003) The protein as a variable in protein crystallization. J. Struct. Biol. 142, 88–97.

    Article  CAS  PubMed  Google Scholar 

  12. Pusey, P. N., Koppel, D. E., Schaefer, D. W., Camerini-Otero, R. D., and Koenig, S. H. (1974) Intensity fluctuation spectroscopy of laser light scattered by solutions of spherical viruses: R17, Obeta, BSV, PM2 and T7. I. Light-scattering technique. Biochemistry 13, 952–959.

    Article  CAS  PubMed  Google Scholar 

  13. Camerini-Otero, R. D., Pusey, P. N., Koppel, D. E., Schaefer, D. W., and Franklin, R. M. (1974) Intensity fluctuation spectroscopy of laser light scattered by solutions of spherical viruses: R17, Obeta, BSV, PM2 and T7. II. Diffusion coefficients, molecular weights, solvation, and particle dimensions. Biochemistry 13, 960–970.

    Article  CAS  PubMed  Google Scholar 

  14. Pecora, R. (1985) Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy. Plenum Press, New York, NY.

    Google Scholar 

  15. Brown, R. G. W. (1990) Miniature laser light scattering instrumentation for particle size analysis. Applied Optics 29, 1.

    Article  Google Scholar 

  16. Phillies, G. D. J. (1990) Quasieleastic light scattering. Anal. Chem. 62, 1049A–1057A.

    Article  CAS  Google Scholar 

  17. Ranatunga, W., Jackson, D., II, R. A. F., and Borgstahl, G. E. O. (2001) Human Rad52 protein has extreme thermal stability. Biochemistry 40, 8557–8562.

    Article  CAS  PubMed  Google Scholar 

  18. Long, M. M., Bishop, J. B., Nagabhushan, T. L., Reichert, P., Smith, G. D., and DeLucas, L. J. (1996) Protein crystal growth in microgravity: bovine insulin, human insulin and human alpha interferon. J. Crystal Growth 168, 233–243.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Borgstahl, G.E.O. (2007). How to Use Dynamic Light Scattering to Improve the Likelihood of Growing Macromolecular Crystals. In: Walker, J.M., Doublié, S. (eds) Macromolecular Crystallography Protocols. Methods in Molecular Biology, vol 363. Humana Press. https://doi.org/10.1007/978-1-59745-209-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-209-0_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-292-6

  • Online ISBN: 978-1-59745-209-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics