Skip to main content

The Production of Glycoproteins by Transient Expression in Mammalian Cells

  • Protocol
High Throughput Protein Expression and Purification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 498))

Summary

In this chapter, protocols for the growth and transfection of Human Embryonic Kidney (HEK) 293T cells for small scale expression screening and large scale protein production are described. Transient expression in mammalian cells offers a method of rapidly producing glycoproteins with a relatively high throughput. HEK 293T cells, in particular, can be transfected with high efficiency (> 50% cell expression) and are amenable to culture at multi-litre scale. Growing cells in micro-plate format allows screening of large numbers of vectors in parallel to prioritise those amenable to scale-up and purification for subsequent structural or functional studies. The glycoform of the expressed protein can be modified by treating cell cultures with kifunensine which inhibits glycan processing during protein synthesis. This results in the production of a chemically homogeneous glycoprotein with short mannose-rich sugar chains attached to the protein backbone. If required, these can be readily removed by endoglycosidase treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hammond, C., Braakman, I. and Helenius, A.(1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control.Proceedings of the National Academy of Sciences of the United States of America,91, 913–917.

    Article  CAS  PubMed  Google Scholar 

  2. Mitra, N., Sinha, S., Ramya, T.N.C. and Surolia, A. (2006) N-linked oligosaccha-rides as outfitters for glycoprotein folding, form and function.Trends in Biochemical Sciences,31, 156–163.

    Article  CAS  PubMed  Google Scholar 

  3. Romanos, M.A., Scorer, C.A. and Clare, J.J. (1992) Foreign gene expression in yeast: a review.Yeast,8, 423–488.

    Article  CAS  PubMed  Google Scholar 

  4. Yin, J., Li, G., Ren, X. and Herrler, G.(2007) Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes.Journal of Biotechnology,127, 335–347.

    Article  CAS  PubMed  Google Scholar 

  5. Harder, T.C. and Osterhaus, A.D.M.E.(1997) Molecular characterization andbaculovirus expression of the glycoprotein B of a seal herpesvirus (Phocid Herpesvirus-1).Virology,227, 343–352.

    Article  CAS  PubMed  Google Scholar 

  6. Kwong, P.D., Wyatt, R., Desjardins, E., Robinson, J., Culp, J.S., Hellmig, B.D., Sweet, R.W., Sodroski, J. and Hendrickson, W.A. (1999) Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1).The Journal of Biological Chemistry,274, 4115–4123.

    Article  CAS  PubMed  Google Scholar 

  7. Wurm, F.M. (2004) Production of recom-binant protein therapeutics in cultivated mammalian cells.Nature Biotechnology,22,1393–1398.

    Article  CAS  PubMed  Google Scholar 

  8. Durocher, Y., Perret, S. and Kamen, A. (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells.Nucleic Acids Research,30, E9.

    Article  PubMed  Google Scholar 

  9. Wurm, F. and Bernard, A. (1999) Large-scale transient expression in mammalian cells for recombinant protein production.Current Opinion in Biotechnology,10, 156–159.

    Article  CAS  PubMed  Google Scholar 

  10. Chang, V.T., Crispin, M., Aricescu, A.R., Harvey, D.J., Nettleship, J.E., Fennelly, J.A., Yu, C., Boles, K.S., Evans, E.J., Stuart, D.I. et al. (2007) Glycoprotein structural genomics: solving the glycosylation problem.Structure,15, 267–273.

    Article  CAS  PubMed  Google Scholar 

  11. Berrow, N.S., Alderton, D., Sainsbury, S., Nettleship, J., Assenberg, R., Rahman, N., Stuart, D.I. and Owens, R.J. (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications.Nucleic AcidsResearch,35, e45.

    Article  Google Scholar 

  12. Aricescu, A.R., Lu, W. and Jones, E.Y. (2006) A time- and cost-efficient system for high-level protein production in mammalian cells.Acta Crystallographica Section D,62,1243–1250.

    Google Scholar 

  13. McCoy, J.P. Jr. (1987) The application of lectins to the characterization and isolation of mammalian cell populations.Cancer and Metastasis Reviews,6, 595–613.

    Article  CAS  PubMed  Google Scholar 

  14. Nettleship, J.E., Brown, J., Groves, M.R.and Geerlof, A. (2007) In Kobe, B., Guss, M. and Huber, T. (eds.),Structural pro-teomics: High-throughput methods. Humana Press, Totowa, NJ.

    Google Scholar 

  15. (2002) Gel filtration: Principles and methods.AI ed. GE Healthcare, Uppsala, Sweden.

    Google Scholar 

Download references

Acknowledgments

The Oxford Protein Production Facility is supported by grants from the Medical Research Council, UK, the Biotechnology and Biological Sciences Research Council, UK and Vizier (European Commission FP6 contract: LSHG-CT-2004-511960).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

16.1 Appendix

ÄKTAxpress Glycoprotein Purification Programme

Main method:(Main)

  • 0.00 Base CV 5.027 {ml} HisTrap_FF_5_ml

  • 0.00 Block Set_up_System_1

    • (Set_up_System_1)

    • 0.00 Base SameAsMain

    • 0.00 ResetFracPosition

    • 0.00 PumpWash A1

    • 0.00 SystemWash 10.00 {ml}

    • 0.00 Alarm_Pressure Enabled 0.7 {MPa} 0.000 {MPa}

    • 0.00 Flow 8 {ml/min} Buffer 0.10 {ml/min} Yes

    • 0.00 ColumnPosition Position1

    • 0.00 Set_Mark “Equilibration of His Column 1”

    • 3.00 AutoZeroUV

    • 3.00 ColumnPosition Bypass

    • 3.00 Flow 0.00 {ml/min} Buffer 0.10 {ml/min} No

    • 3.00 End_Block

  • 0.00 Watch_AirSensor Equal 1 Finish_load_1

    • (Finish_load_1)

    • 0.00 Base Volume

    • 0.00 InletValve A1

  • 0.00 Flow 0.00 {ml/min} Buffer 0.10 {ml/min} No

  • 0.00 Block Air_removal_1

    • (Air_removal_1)

    • 0.00 Base Volume

    • 0.00 InletValve A1

    • 0.00 Set_Mark “Air removal”

    • 0.00 InjectionValve Waste

    • 0.00 Flow 20 {ml/min} Buffer 0.10 {ml/min} Yes

    • 20.00 End_Block

  • 0.00 Block Wash_Column_1

    • (Wash_Column_1)

    • 0.00 Base SameAsMain

    • 0.00 Set_Mark “Washing column 1”

    • 0.00 Flow 0.00 {ml/min} Buffer 0.10 {ml/min} No

    • 0.00 Watch_Off AirSensor

    • 0.00 Alarm_AirSensor Enabled

    • 0.00 Injection Valve Inject

    • 0.00 Flow 5.00 {ml/min} Buffer 0.10 {ml/min} Yes

    • 10.00 AutoZeroUV

    • 10.00 End_Block

  • 0.00 Block End_fractionation_load_1

    • (End_fractionation_load_1)

    • 0.00 Base SameAsMain

    • 0.00 OutletValve WasteF1

    • 0.00 End_Block

  • 0.00 Block Set_up_elution_1

    • (Set_up_elution_1)

    • 0.00 Base SameAsMain

    • 0.00 ColumnPosition Bypass

    • 0.00 PumpWash A3

    • 0.00 OutletValve LoopFracF12

    • 0.00 LoopSelection Bypass

    • 0.00 ColumnPosition Position1

    • 0.00 End_Block

  • 0.00 Block Elution_Peak

    • (Elution_Peak)

    • 0.00 Base SameAsMain 5.027 {ml} HisTrap_HP_5_ml

    • 0.00 Watch_UV Greater_Than 100.000 {mAU} Peak_Collection

    • (Peak_Collection)

    • 0.00 Base Volume

    • 0.00 LoopSelection LP1

    • 0.00 Set_Mark “Peak_Start”

    • 0.00 Watch_UV Less_Than 100.000 {mAU} Peak_End

    • (Peak_End)

    • 0.00 Base Volume

    • 0.00 LoopSelection Bypass

    • 0.00 Set_Mark “Peak_End”

    • 0.00 End_Block

    • 7.50 Block Peak_End

    • (Peak_End)

    • 0.00 Base Volume

    • 0.00 LoopSelection Bypass

    • 0.00 Set_Mark “Peak_End”

    • 0.00 End_Block

    • 7.50 End_Block

    • 5.00 Watch_Off UV

    • 5.00 LoopSelection Bypass

    • 5.00 End_Block

  • 0.00 Block Set_up_Gel_Filtration

    • (Set_up_Gel_Filtration)

    • 0.00 Base SameAsMain

    • 0.00 Flow 0.00 {ml/min} Buffer 0.10 {ml/min} No

    • 0.00 ColumnPosition Bypass

    • 0.00 OutletValve WasteF1

    • 0.00 PumpWash A4

    • 0.00 SystemWash 10.00 {ml}

    • 0.00 Alarm_Pressure Enabled 0.5 {MPa} 0.000 {MPa}

    • 0.00 Alarm_AirSensor Enabled

    • 0.00 Flow 1.2 {ml/min} Buffer 0.10 {ml/min} Yes

    • 0.00 End_Block

  • 0.00 Block Equilibrate_Gel_Filtration

    • (Equilibrate_Gel_Filtration)

    • 0.00 Base CV 120.637 {ml} HiLoad_16/60_Superdex_75_prep_grade

    • 0.00 ColumnPosition Position5

    • 0.10 AutoZeroUV

    • 0.10 End_Block

  • 0.00 Block Gel_Filtration

    • (Gel_Filtration)

    • 0.00 Base CV 120.637 {ml} HiLoad_16/60_Superdex_75_prep_grade

    • 0.00 Block Inject_Peak

    • (Inject_Peak)

    • 0.00 Base Volume

    • 0.00 InjectionValve Reinject

    • 0.00 LoopSelection LP1

    • 0.00 Set_Mark “Peak_injection”

    • 10.00 InjectionValve Inject

    • 10.00 End_Block

    • 0.30 Block Fractionation_Gel_Filtration

    • (Fractionation_Gel_Filtration)

    • 0.00 Base CV 120.637 {ml} HiLoad_16/60_Superdex_75_prep_grade

    • 0.00 OutletValve FracCollF2

    • 0.00 Fractionation 2.000 {ml}

    • 0.00 End_Block

    • 1.10 End_Block

    • 0.00 End_Method

  • 0.00 Block Fractionation_load_1

    • (Fractionation_load_1)

    • 0.00 Base SameAsMain

    • 0.00 OutletValve F3

    • 0.00 End_Block

  • 0.00 Block Load_Sample_1

    • (Load_Sample_1)

    • 0.00 Base Volume

    • 0.00 Flow 8 {ml/min} Buffer 0.10 {ml/min} Yes

    • 0.00 ColumnPosition Position1

    • 0.00 Set_Mark “Loading sample 1”

    • 0.00 Loop (200)#No_of_loops_for_load

    • 0.00 InletValve A2

    • (50.00)#Volume_of_part_sample InletValve A1

    • 60.00 Loop_End

    • 60.00 End_Block

  • 0.00 Message “The programme finished but there is still sample!!” Screen “error”

  • 0.00 End_Method

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nettleship, J.E., Rahman-Huq, N., Owens, R.J. (2009). The Production of Glycoproteins by Transient Expression in Mammalian Cells. In: Doyle, S.A. (eds) High Throughput Protein Expression and Purification. Methods in Molecular Biology, vol 498. Humana Press. https://doi.org/10.1007/978-1-59745-196-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-196-3_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-879-9

  • Online ISBN: 978-1-59745-196-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics