Skip to main content

Evolution and Origin of Virulence Isolates

  • Chapter
Book cover Bacterial Genomes and Infectious Diseases

Abstract

Perhaps the most significant benefit of microbial genomic sequences is the knowledge gained on the molecular process of genome evolution in microbes derived from comparative genomic analysis. Genetic variations are the driving forces of evolution. These are generated not only through base substitutions, small deletions and insertions, major DNA rearrangements and deletions, but also through DNA acquisition by horizontal gene transfer. Pathogens are evolved from diverse bacterial species. The molecular mechanisms involved are diverse, and likely affected by the conditions of the microenvironment inhabited by the evolving bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Preston, A., Parkhill, J., and Maskell, D. J. (2004) The bordetellae: lessons from genomics. Nat. Rev. Microbiol. 2, 379–390.

    Article  PubMed  CAS  Google Scholar 

  2. Ochman, H., Lawrence, J. G., and Grolsman, E. A. (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304.

    Article  PubMed  CAS  Google Scholar 

  3. Arber, W. (2000) Genetic variation: mechanisms and impact on microbial evolution. FEMS Microbiol. Rev. 24, 1–7.

    Article  PubMed  CAS  Google Scholar 

  4. Schofield, M. J. and Hsieh, P. (2003). DNA mismatch repair: molecular mechanisms and biological function. Annu. Rev. Microbiol. 57, 579–608.

    Article  PubMed  CAS  Google Scholar 

  5. Tomb, J. F., White, O., Kerlavage, A. R., et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547.

    Article  PubMed  CAS  Google Scholar 

  6. Bickle, T. A. and Kruger, D. H. (1993) Biology of DNA restriction. Microbiol. Review 57, 434–450.

    CAS  Google Scholar 

  7. Roberts, R. J. (1998) Bioinformatics: a new world of restriction and modification enzymes. NEB Transcript 9, 1–4.

    Google Scholar 

  8. Nakayama, Y. and Kobayashi, I. (1998) Restriction-modification gene complexes as selfish gene entities: Roles of regulatory system in their estabishment, maintenance, and apoptotic mutual exclusion. Proc. Natl. Acad. Sci. USA 95, 6442–6447.

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi, I. (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29, 3742–3756.

    Article  PubMed  CAS  Google Scholar 

  10. Brussow, H., Canchaya, C., and Hardt, W. D. (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602.

    Article  PubMed  CAS  Google Scholar 

  11. Kroes, I., Lepp, P. W., and Relman, D. A. (1999) Bacterial diversity within the human subgingival crevice. Proc. Natl. Acad. Sci. USA 96, 14,547–14,552.

    Article  PubMed  CAS  Google Scholar 

  12. DeLong, E. F. (2002) Microbial population genomics and ecology. Curr. Opin. Microbiol. 5, 520–524.

    Article  PubMed  Google Scholar 

  13. Hugenholtz, P. (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol. 3, REVIEWS0003.

    Google Scholar 

  14. Torsvik, V. and Ovreas, L. (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5, 240–245.

    Article  PubMed  CAS  Google Scholar 

  15. Blattner, F. R., Plunkett, G. 3rd, Bloch, C. A., et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.

    Article  PubMed  CAS  Google Scholar 

  16. Perna, N. T., Plunkett, G. 3rd, Burland, V., et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533.

    Article  PubMed  CAS  Google Scholar 

  17. Hayashi, T., Makino, K., Ohnishi, M., et al. (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8, 11–22.

    Article  PubMed  CAS  Google Scholar 

  18. Welch, R. A., Burland, V., Plunkett, G. 3rd, et al. (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 17,020–17,024.

    Article  PubMed  CAS  Google Scholar 

  19. Dobrindt, U., Hochhut, B., Hentschel, U., and Hacker, J. (2004) Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2, 414–424.

    Article  PubMed  CAS  Google Scholar 

  20. Grozdanov, L., Raasch, C., Schulze, J., et al. (2004) Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J. Bacteriol. 186, 5432–5441.

    Article  PubMed  CAS  Google Scholar 

  21. Lan, R., Alles, M. C., Donohoe, K., Martinez, M. B., and Reeves, P. R. (2004) Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infect. Immun. 72, 5080–5088.

    Article  PubMed  CAS  Google Scholar 

  22. Nakata, N., Tobe, T., Fukuda, I., et al. (1993) The absence of a surface protease, OmpT, determines the intercellular spreading ability of Shigella: the relationship between the ompT and kcpA loci. Mol. Microbiol. 9, 459–468.

    Article  PubMed  CAS  Google Scholar 

  23. Maurelli, A. T., Fernandez, R. E., Bloch, C. A., Rode, C. K., and Fasano, A. (1998) “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl. Acad. Sci. USA 95, 3943–3948.

    Article  PubMed  CAS  Google Scholar 

  24. Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A., and Carniel, E. (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA 96, 14,043–14,048.

    Article  PubMed  CAS  Google Scholar 

  25. Parkhill, J., Wren, B. W., Thomson, N. R., et al. (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.

    Article  PubMed  CAS  Google Scholar 

  26. Deng, W., Burland, V., Plunkett, G. 3rd, et al. (2002) Genome sequence of Yersinia pestis KIM J. Bacteriol. 184, 4601–4611.

    Article  CAS  Google Scholar 

  27. Song, Y., Tong, Z., Wang, J., et al. (2004) Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res. 11, 179–197.

    Article  PubMed  CAS  Google Scholar 

  28. Chain, P. S., Carniel, E., Larimer, F. W., et al. (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA 101, 13,826–13,831.

    Article  PubMed  CAS  Google Scholar 

  29. Cornelis, G. R. (2002) Yersinia type III secretion: send in the effectors. J. Cell Biol. 158, 401–408.

    Article  PubMed  CAS  Google Scholar 

  30. Wren, B. W. (2003) The yersiniae-a model genus to study the rapid evolution of bacterial pathogens. Nat. Rev. Microbiol. 1, 55–64.

    Article  PubMed  CAS  Google Scholar 

  31. Waldor, M. K. and Mekalanos, J. J. (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914.

    Article  PubMed  CAS  Google Scholar 

  32. Faruque, S. M., Asadulghani, Saha, M. N., et al. (1998) Analysis of clinical and environmental strains of nontoxigenic Vibrio cholerae for susceptibility to CTXPhi: molecular basis for origination of new strains with epidemic potential. Infect Immun. 66, 5819–5825.

    PubMed  CAS  Google Scholar 

  33. Dziejman, M., Balon, E., Boyd, D., Fraser, C. M., Heidelberg, J. F., and Mekalanos, J. J. (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. USA 99, 1556–1561.

    Article  PubMed  CAS  Google Scholar 

  34. Hochhut, B. and Waldor, M. K. (1999) Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol. Microbiol. 32, 99–110.

    Article  PubMed  CAS  Google Scholar 

  35. Batut, J., Andersson, S. G., and O’Callaghan, D. (2004) The evolution of chronic infection strategies in the alpha-proteobacteria. Nat. Rev. Microbiol. 2, 933–945.

    Article  PubMed  CAS  Google Scholar 

  36. Boussau, B., Karlberg, E. O., Frank, A. C., Legault, B. A., and Andersson, S. G. (2004) Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc. Natl. Acad. Sci. USA 101, 9722–9727.

    Article  PubMed  CAS  Google Scholar 

  37. Andersson, S. G., Zomorodipour, A., Andersson, J. O., et al. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140.

    Article  PubMed  CAS  Google Scholar 

  38. Amiri, H., Davids, W., and Andersson, S. G. (2003) Birth and death of orphan genes in Rickettsia. Mol. Biol. Evol. 20, 1575–1587.

    Article  PubMed  CAS  Google Scholar 

  39. Maniloff, J. (2002) Phylogeny and evolution, in Molecular Biology and Pathogenicity of Mycoplasmas (Rasin, S. and Herrmann, R., eds.). Kluwer Academic/Plenum Publishers, New York, pp. 31–44.

    Chapter  Google Scholar 

  40. Sasaki, Y., Ishikawa, J., Yamashita, A., et al. (2002) The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res. 30, 5293–5300.

    Article  PubMed  CAS  Google Scholar 

  41. Neyrolles, O., Chambaud, I., Ferris, S., et al. (1999) Phase variations of the Mycoplasma penetrans main surface lipoprotein increase antigenic diversity. Infect. Immun. 67, 1569–1578.

    PubMed  CAS  Google Scholar 

  42. Glew, M. D., Papazisi, L., Poumarat, F., Bergonier, D., Rosengarten, R., and Citti, C. (2000) Characterization of a multigene family undergoing high-frequency DNA rearrangements and coding for abundant variable surface proteins in Mycoplasma agalactiae. Infect. Immun. 68, 4539–4548.

    Article  PubMed  CAS  Google Scholar 

  43. Roske, K., Blanchard, A., Chambaud, I., et al. (2001) Phase variation among major surface antigens of Mycoplasma penetrans. Infect. Immun. 69, 7642–7651.

    Article  PubMed  CAS  Google Scholar 

  44. Liu, L., Panangala, V. S., and Dybvig, K. (2002) Trinucleotide GAA repeats dictate pMGA gene expression in Mycoplasma gallisepticum by affecting spacing between flanking regions. J. Bacteriol. 184, 1335–1339.

    Article  PubMed  CAS  Google Scholar 

  45. Winner, F., Markova, I., Much, P., et al. (2003) Phenotypic switching in Mycoplasma gallisepticum hemadsorption is governed by a high-frequency, reversible point mutation. Infect. Immun. 71, 1265–1273.

    Article  PubMed  CAS  Google Scholar 

  46. Parkhill, J., Sebaihia, M., Preston, A., et al. (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35, 32–40.

    Article  PubMed  Google Scholar 

  47. Feil, E. J., Cooper, J. E., Grundmann, H., et al. (2003) How clonal is Staphylococcus aureus? J. Bacteriol. 185, 3307–3316.

    Article  PubMed  CAS  Google Scholar 

  48. Kuroda, M., Ohta, T., Uchiyama, I., et al. (2001) Whole genome sequencing of meticillinresistant Staphylococcus aureus. Lancet 357, 1225–1240.

    Article  PubMed  CAS  Google Scholar 

  49. Baba, T., Takeuchi, F., Kuroda, M., et al. (2002) Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359, 1819–1827.

    Article  PubMed  CAS  Google Scholar 

  50. Holden, M. T., Feil, E. J., Lindsay, J. A., et al. (2004) Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA 101, 9786–9791.

    Article  PubMed  CAS  Google Scholar 

  51. Lindsay, J. A. and Holden, M.T. (2004) Staphylococcus aureus: superbug, super genome? Trends Microbiol. 12, 378–385.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chan, V.L., Sherman, P.M., Bourke, B. (2006). Evolution and Origin of Virulence Isolates. In: Chan, V.L., Sherman, P.M., Bourke, B. (eds) Bacterial Genomes and Infectious Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-152-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-152-9_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-496-8

  • Online ISBN: 978-1-59745-152-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics