Skip to main content

Neural Stem Cells and the Future Treatment of Neurological Diseases: Raising the Standard

  • Protocol
Neural Stem Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 438))

Summary

Neural stem and progenitor cells offer great potential for treatment of neurological disorders. Both neurologic and neurological were used in text; the latter was more common. Note changes have been made to match in title and text body. The current strategies of isolation, expansion, and characterization of these cells require in vitro manipulations that can change their intrinsic properties, specifically with the acquisition of chromosomal abnormalities. We have analyzed the rationale of using neural stem cells in neurological disorders, the caveats of current isolation and in vitro culture protocols of neural precursors. Addressing these challenges is crucial for translation of neural stem cell therapy to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gage, F. H., Kempermann, G., Palmer, T. D., Peterson, D. A., and Ray, J. (1998) Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol. 36, 249–266.

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez-Buylla, A. and Temple, S. (1998) Stem cells in the developing and adult nervous system. J. Neurobiol. 36, 105–110.

    Article  CAS  PubMed  Google Scholar 

  3. Sheen, V. L., Ganesh, V. S., Topcu, M., et al. (2004) Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nat. Genet. 36, 69–76.

    Article  CAS  PubMed  Google Scholar 

  4. Sheen, V. L., Ferland, R. J., Harney, M., et al. (2006) Impaired proliferation and migration in human Miller-Dieker neural precursors. Ann. Neurol. 60, 137–144.

    Article  CAS  PubMed  Google Scholar 

  5. Li, J., Imitola, J., Snyder, E. Y., and Sidman, R. L. (2006) Neural stem cells rescue nervous Purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J. Neurosci. 26, 7839–7848.

    Article  CAS  PubMed  Google Scholar 

  6. Fraidenraich, D., Stillwell, E., Romero, E., Wilkes, D., Manova, K., Basson, C. T., and Benezra, R. (2004) Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science 306, 247–252.

    Article  CAS  PubMed  Google Scholar 

  7. Fraidenraich, D. and Benezra, R. (2006) Embryonic stem cells prevent developmental cardiac defects in mice. Nat. Clin. Pract. Cardiovasc. Med. 3 (Suppl. 1), S14–S17.

    Article  CAS  PubMed  Google Scholar 

  8. Pluchino, S., Zanotti, L., Rossi, B., et al. (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436, 266–271.

    Article  CAS  PubMed  Google Scholar 

  9. Morshead, C. M., Benveniste, P., Iscove, N. N., and van der Kooy, D. (2002) Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat. Med. 8, 268–273.

    Article  CAS  PubMed  Google Scholar 

  10. Bjorklund, A. and Lindvall, O. (2000) Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3, 537–544.

    Article  CAS  PubMed  Google Scholar 

  11. Imitola, J., Snyder, E. Y., and Khoury, S. J. (2003) Genetic programs and responses of neural stem/progenitor cells during demyelination: potential insights into repair mechanisms in multiple sclerosis. Physiol. Genomics 14, 171–197.

    CAS  PubMed  Google Scholar 

  12. Kornek, B., Storch, M. K., Weissert, R., et al. (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157, 267–276.

    Article  CAS  PubMed  Google Scholar 

  13. Imitola, J., Chitnis, T., and Khoury, S. J. (2006) Insights into the molecular pathogenesis of progression in multiple sclerosis: potential implications for future therapies. Arch. Neurol. 63, 25–33.

    Article  PubMed  Google Scholar 

  14. Pluchino, S., Quattrini, A., Brambilla, E., et al. (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422, 688–694.

    Article  CAS  PubMed  Google Scholar 

  15. Wagner, J., Akerud, P., Castro, D. S., et al. (1999) Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat. Biotechnol. 17, 653–659.

    Article  CAS  PubMed  Google Scholar 

  16. Kim, D. W., Chung, S., Hwang, M., et al. (2006) Stromal cell-derived inducing activity, Nurr1, and signaling molecules synergistically induce dopaminergic neurons from mouse embryonic stem cells. Stem Cells 24, 557–567.

    Article  CAS  PubMed  Google Scholar 

  17. Roy, N. S., Cleren, C., Singh, S. K., Yang, L., Beal, M. F., and Goldman, S. A. (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med. 12, 1259–1268.

    Article  CAS  PubMed  Google Scholar 

  18. Thored, P., Arvidsson, A., Cacci, E., et al. (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24, 739–747.

    Article  CAS  PubMed  Google Scholar 

  19. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., and Lindvall, O. (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970.

    Article  CAS  PubMed  Google Scholar 

  20. Imitola, J., Raddassi, K., Park, K. I., et al. (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc. Natl. Acad. Sci. USA 101, 18117–18122.

    Article  CAS  PubMed  Google Scholar 

  21. Sanai, N., Tramontin, A. D., Quinones-Hinojosa, A., et al. (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744.

    Article  CAS  PubMed  Google Scholar 

  22. Windrem, M. S., Nunes, M. C., Rashbaum, et al. (2004) Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat. Med. 10, 93–97.

    Google Scholar 

  23. Kondo, T. and Raff, M. (2006) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells [see comments]. Science 289, 1754–1757.

    Article  Google Scholar 

  24. Jackson, E. L., Garcia-Verdugo, J. M., Gil-Perotin, S., et al. (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187–199.

    Article  CAS  PubMed  Google Scholar 

  25. Snyder, E. Y., Deitcher, D. L., Walsh, C., Arnold-Aldea, S., Hartwieg, E. A., and Cepko, C. L. (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68, 33–51.

    Article  CAS  PubMed  Google Scholar 

  26. Reynolds, B. A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  27. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034.

    Article  CAS  PubMed  Google Scholar 

  28. Gabay, L., Lowell, S., Rubin, L. L., and Anderson, D. J. (2003) Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499.

    Article  CAS  PubMed  Google Scholar 

  29. Reynolds, B. A. and Rietze, R. L. (2005) Neural stem cells and neurospheres–re-evaluating the relationship. Nat. Methods 2, 333–336.

    Article  CAS  PubMed  Google Scholar 

  30. Fults, D., Pedone, C., Dai, C., and Holland, E. C. (2002) MYC expression promotes the proliferation of neural progenitor cells in culture and in vivo. Neoplasia 4, 32–39.

    Article  CAS  PubMed  Google Scholar 

  31. Sanai, N., Alvarez-Buylla, A., and Berger, M. S. (2005) Neural stem cells and the origin of gliomas. N. Engl. J. Med. 353, 811–822.

    Article  CAS  PubMed  Google Scholar 

  32. Uhrbom, L., Dai, C., Celestino, J. C., Rosenblum, M. K., Fuller, G. N., and Holland, E. C. (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 62, 5551–5558.

    CAS  PubMed  Google Scholar 

  33. Singec, I., Knoth, R., Meyer, R. P., et al. (2003) Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat. Methods 3, 801–806.

    Article  Google Scholar 

  34. Tang, Y., Shah, K., Messerli, S. M., Snyder, E., Breakefield, X., and Weissleder, R. (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum. Gene Ther. 14, 1247–1254.

    Article  CAS  PubMed  Google Scholar 

  35. Shapiro, E. M., Gonzalez-Perez, O., Manuel Garcia-Verdugo, J., Alvarez-Buylla, A., and Koretsky, A. P. (2006) Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage 32, 1150–1157.

    Article  PubMed  Google Scholar 

  36. Jiang, Q., Zhang, Z. G., Ding, G. L., et al. (2006) MRI detects white matter reorganization after neural progenitor cell treatment of stroke. Neuroimage 32, 1080–1089.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants AI043496 and AI058680 from NIAID, and RG3945 from NMSS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Imitola, J., Khoury, S.J. (2008). Neural Stem Cells and the Future Treatment of Neurological Diseases: Raising the Standard . In: Weiner, L.P. (eds) Neural Stem Cells. Methods in Molecular Biology™, vol 438. Humana Press. https://doi.org/10.1007/978-1-59745-133-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-133-8_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-846-1

  • Online ISBN: 978-1-59745-133-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics