Skip to main content

The Use of Saporin Conjugates to Dissect Neurons Responsible for Sleep and Wakefulness

  • Chapter
Book cover Molecular Neurosurgery With Targeted Toxins

Abstract

Virtually all organisms manifest regular periods of behavioral quiescence and activity. In mammals and birds, these periods have evolved into regular episodes of wakefulness and sleep. The sleep period itself has further differentiated into two distinct states, slow wave sleep (SWS) and rapid eye movement (REM) sleep. In humans, SWS has further differentiated into four distinct stages, each identified by a specific pattern on the electroencephalogram (EEG). REM sleep is very similar to wakefulness in many ways; the main difference is that there is behavioral quiescence during REM sleep. For this reason, REM sleep is often referred to as paradoxical sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rechtschaffen A, Gilliland MA, Bergmann BM, Winter JB. Physiological correlates of prolonged sleep deprivation in rats. Science 1983;221:182–184.

    Article  PubMed  CAS  Google Scholar 

  2. Mantyh PW, Rogers SD, Honore P, et al. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 1997;278:275–279.

    Article  PubMed  CAS  Google Scholar 

  3. Waite JJ, Wardlow ML, Chen AC, Lappi DA, Wiley RG, Thal LJ. Time course of cholinergic and monoaminergic changes in rat brain after immunolesioning with 192 IgG-saporin. Neurosci Lett 1994;169:154–158.

    Article  PubMed  CAS  Google Scholar 

  4. Gerashchenko D, Kohls MD, Greco M, et al. Hypocretin-2-saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat. J Neurosci 2001;21:7273–7283.

    PubMed  CAS  Google Scholar 

  5. Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000;6:991–997.

    Article  PubMed  CAS  Google Scholar 

  6. Thannickal TC, Moore RY, Nienhuis R, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 2000;27:469–474.

    Article  PubMed  CAS  Google Scholar 

  7. Peyron C, Tighe DK, Van den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 1998;18:9996–10,015.

    PubMed  CAS  Google Scholar 

  8. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior [comment]. Cell 1998;2:573–585.

    Article  Google Scholar 

  9. De Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 1998;95:322–327.

    Article  PubMed  Google Scholar 

  10. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM. Distribution of orexin receptor mRNA in the rat brain [published erratum appears in FEBS Lett 1999;442:122]. FEBS Lett 1998;438:71–75.

    Article  PubMed  CAS  Google Scholar 

  11. Marcus JN, Aschkenasi CJ, Lee CE, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 2001;435:6–25.

    Article  PubMed  CAS  Google Scholar 

  12. Greco MA, Shiromani PJ. Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats. Mol Brain Res 2001;88:176–182.

    Article  PubMed  CAS  Google Scholar 

  13. Date Y, Ueta Y, Yamashita H, et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 1999;96:748–753.

    Article  PubMed  CAS  Google Scholar 

  14. Horvath TL, Diano S, Van den Pol AN. Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J Neurosci 1999;19:1072–1087.

    PubMed  CAS  Google Scholar 

  15. Hagan JJ, Leslie RA, Patel S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA 1999;96:10,911–10,916.

    Article  PubMed  CAS  Google Scholar 

  16. Shiromani P, Rapaport MH, Gillin JC. The neurobiology of sleep: basic concepts and clinical implications. In: Hales RE, Frances AJ, eds. Psychiatry Update: The American Psychiatric Association Annual Review. Vol. 6. Washington, DC: American Psychiatric Press; 1987:235–259.

    Google Scholar 

  17. Shiromani PJ, Scammell TE, Sherin JE, Saper CB. Hypothalamic regulation of sleep. In: Lydic R, Baghdoyan HA, eds. Handbook of Behavioral State Control: Cellular and Molecular Mechanisms. Boca Raton, FL: CRC Press; 1998:311–325.

    Google Scholar 

  18. Shiromani PJ. Sleep circuitry, regulation and function: lesson from c-fos, leptin and timeless. In: Morrison A, Fluharty C, eds. Progress in Psychobiology and Physiological Psychology. San Diego, CA: Academic Press; 1998:67–90.

    Google Scholar 

  19. Szymusiak R. Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation. Sleep 1995;18:478–500.

    PubMed  CAS  Google Scholar 

  20. Mesulam MM. Human brain cholinergic pathways. In: Aquilonius SM, Gillberg PG, eds. Cholinergic Neurotransmission: Functional and Clinical Aspects. Amsterdam, The Netherlands: Elsevier Science; 1990:231–241.

    Google Scholar 

  21. Alam MN, Szymusiak R, McGinty D. Local preoptic/anterior hypothalamic warming alters spontaneous and evoked neuronal activity in the magno-cellular basal forebrain. Brain Res 1995;696:221–230.

    Article  PubMed  CAS  Google Scholar 

  22. Koyama Y, Hayaishi O. Modulation by prostaglandins of activity of sleep-related neurons in the preoptic/anterior hypothalamic areas in rats. Brain Res Bull 1994;33:367–372.

    Article  PubMed  CAS  Google Scholar 

  23. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 1997;276:1265–1266.

    Article  PubMed  CAS  Google Scholar 

  24. Vanderwolf CH. Cerebral activity and behavior control by central cholinergic and serotonergic systems. Int Rev Neurobiol 1988;30:225–340.

    Article  PubMed  CAS  Google Scholar 

  25. Jasper HH, Tessier J. Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science 1971;172:601–602.

    Article  PubMed  CAS  Google Scholar 

  26. Szerb JC. Cortical acetylcholine release and electroencephalographic arousal. J Physiol (London) 1967;192:329–345.

    CAS  Google Scholar 

  27. Rasmusson DD, Clow K, Szerb JC. Frequency-dependent increase in cortical acetylcholine release evoked by stimulation of the nucleus basalis magnocellularis in the rat. Brain Res 1992;594:150–154.

    Article  PubMed  CAS  Google Scholar 

  28. Buzsaki G, Bickford R, Ponomareff G, Thal LJ, Mandel R, Gage FH. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 1998;8:4007–4026.

    Google Scholar 

  29. Ray P, Jackson W. Lesions of nucleus basalis alter ChAT activity and EEG in rat frontal neocortex. Electroencephalogr Clin Neurophysiol 1991;79:62–68.

    PubMed  CAS  Google Scholar 

  30. Dekker AJ, Thal LJ. Independent effects of cholinergic and serotonergic lesions on acetylcholine and serotonin release in the neocortex of the rat. Neurochem Res 1993;18:277–283.

    Article  PubMed  CAS  Google Scholar 

  31. Bassant MH, Apartis E, Jazat-Poindessous FR, Wiley RG, Lamour YA. Selective immunolesion of the basal forebrain cholinergic neurons: effects on hippocampal activity during sleep and wakefulness in the rat. Neurodegeneration 1995;4:61–70.

    Article  PubMed  CAS  Google Scholar 

  32. Kapas L, Obal FJ, Book AA, Schweitzer JB, Wiley RG, Krueger JM. The effects of immunolesions of nerve growth factor-receptive neurons by 192 IgG-saporin on sleep. Brain Res 1996;712:53–59.

    Article  PubMed  CAS  Google Scholar 

  33. Gerashchenko D, Salin-Pascual R, Shiromani PJ. Effects of hypocretin-saporin injections into the medial septum on sleep and hippocampal τ. Brain Res 2001;913:106–115.

    Article  PubMed  CAS  Google Scholar 

  34. Alreja M. Excitatory actions of serotonin on GABAergic neurons of the medial septum and diagonal band of Broca. Synapse 2000;22:15–27.

    Article  Google Scholar 

  35. Wu M, Shanabrough M, Leranth C, Alreja M. Cholinergic excitation of septohippocampal GABA but not cholinergic neurons: implications for learning and memory. J Neurosci 2000;20:3900–3908.

    PubMed  CAS  Google Scholar 

  36. Nauta WJH. Hypothalamic regulation of sleep in rats. An experimental study. J Neurophysiol 1946;9:285–316.

    Google Scholar 

  37. Shoham S, Teitelbaum P. Subcortical waking and sleep during lateral hypothalamic “somnolence” in rats. Physiol Behav 1982;28:323–333.

    Article  PubMed  CAS  Google Scholar 

  38. McGinty DJ. Somnolence, recovery and hyposomnia following ventromedial diencephalic lesions in the rat. Electroencephalogr Clin Neurophysiol 1969;26:70–79.

    Article  PubMed  CAS  Google Scholar 

  39. Jurkowlaniec E, Trojnar W, Tokarski J. The EEG activity after lesions of the diencephalic part of the zona incerta in rats. Acta Physiol Pol 1990;41:85–97.

    PubMed  CAS  Google Scholar 

  40. Denoyer M, Sallanon M, Buda C, Kitahama K, Jouvet M. Neurotoxic lesion of the mesencephalic reticular formation and/or the posterior hypothalamus does not alter waking in the cat. Brain Res 1991;539:303.

    Article  Google Scholar 

  41. Sallanon M, Sakai K, Buda C, Puymartin M, Jouvet M. Increase of paradoxical sleep induced by microinjections of ibotenic acid into the ventrolateral part of the posterior hypothalamus in the cat. Arch Ital Biol 1988;126:87–97.

    PubMed  CAS  Google Scholar 

  42. Gerashchenko D, Blanco-Centurion C, Greco MA, Shiromani PJ. Effects of lateral hypothalamic lesion with the neurotoxin hypocretin2-saporin on sleep in Long Evans rats. Neuroscience 2003;116:223–235.

    Article  PubMed  CAS  Google Scholar 

  43. Senba E, Daddona PE, Watanabe T, Wu JY, Nagy JI. Coexistence of adenosine deaminase, histidine decarboxylase, and glutamate decarboxylase in hypothalamic neurons of the rat. J Neurosci 1985;5:3392–3402.

    Google Scholar 

  44. Vanni-Mercier G, Sakai K, Jouvet M. Neurones specifiques de l’eveil dans l’hypothalamus posterieur. CR Acad Sci 1984;298:195–200.

    CAS  Google Scholar 

  45. Szymusiak R, Iriye T, McGinty D. Sleep-waking discharge of neurons in the posterior lateral hypothalamic area of cats. Brain Res Bull 1989;23:111–120.

    Article  PubMed  CAS  Google Scholar 

  46. Sakai K, El Mansari M, Lin JS, Zhang G, Vanni-Mercier G. The posterior hypothalamus in the regulation of wakefulness and paradoxical sleep. In: Mancia M, Marini G, eds. The Diencephalon and Sleep. New York: Raven Press; 1990:171–198.

    Google Scholar 

  47. Lin JS, Sakai K, Jouvet M. Hypothalamo-preoptic histaminergic projections in sleep-wake control in the cat. Eur J Neurosci 1994;6:618–625.

    Article  PubMed  CAS  Google Scholar 

  48. Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx J-L, Watanabe T, Lin J-S. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 2003;22:7695–7711.

    Google Scholar 

  49. Eriksson KS, Sergeeva O, Brown RE, Haas HL. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci 2001;21:9273–9279.

    PubMed  CAS  Google Scholar 

  50. Huang ZL, Qu WM, Li WD, et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci USA 2001;98:9965–9970.

    Article  PubMed  CAS  Google Scholar 

  51. Li Y, Gao XB, Sakurai T, Van den Pol AN. Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron-a potential mechanism for orchestrating the hypothalamic arousal system. Neuron 2002;35:1169–1181.

    Article  Google Scholar 

  52. Lucas EA, Sterman MB. Effect of a forebrain lesion on the polycyclic sleep-wake cycle and sleep-wake patterns in the cat. Exp Neurol 1975;46:368–388.

    Article  PubMed  CAS  Google Scholar 

  53. Szymusiak R, McGinty D. Sleep suppression following kainic acid-induced lesions of the basal forebrain. Exp Neurol 1986;94:598–614.

    Article  PubMed  CAS  Google Scholar 

  54. Sallanon M, Denoyer M, Kitahama K, Aubert C, Gay N, Jouvet M. Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience 1989;32:669–683.

    Article  PubMed  CAS  Google Scholar 

  55. Shoham S, Blatteis CM, Krueger JM. Effects of preoptic area lesions on muramyl dipeptide-induced sleep. Brain Research Brain Res 1989;476:396–399.

    CAS  Google Scholar 

  56. Asala SA, Okano Y, Honda K, Inoue S. Effects of medial preoptic area lesions on sleep and wakefulness in unrestrained rats. Neurosci Lett 1990;114:300–304.

    Article  PubMed  CAS  Google Scholar 

  57. John J, Kumar VM, Gopinath G, Ramesh V, Mallick H. Changes in sleep-wakefulness after kainic acid lesion of the preoptic area in rats. Jpn J Physiol 1994;44:231–242.

    Article  PubMed  CAS  Google Scholar 

  58. Sterman MB, Clemente C. Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat. Exp Neurol 1962;6:103–117.

    Article  PubMed  CAS  Google Scholar 

  59. Szymusiak R, McGinty D. Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res 1986;370:82–92.

    Article  PubMed  CAS  Google Scholar 

  60. Kaitin K. Preoptic area unit activity during sleep and wakefulness in the cat. Exp Neurol 1984;83:347–351.

    PubMed  CAS  Google Scholar 

  61. Findlay ALR, Hayward JN. Spontaneous activity of single neurones in the hypothalamus of rabbits during sleep and waking. J Physiol 1969;201:237–258.

    PubMed  CAS  Google Scholar 

  62. Koyama Y, Hayaishi O. Firing of neurons in the preoptic/anterior hypothalamic areas in rat: its possible involvement in slow wave sleep and paradoxical sleep. Neurosci Res 1994;19:31–38.

    Article  PubMed  CAS  Google Scholar 

  63. Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science 1996;271:216–219.

    Article  PubMed  CAS  Google Scholar 

  64. Szymusiak R, Alam MN, Steininger TL, McGinty D. Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 1998;803:178–188.

    Article  PubMed  CAS  Google Scholar 

  65. Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999;98:365–376.

    Article  PubMed  CAS  Google Scholar 

  66. Horvath TL, Peyron C, Diano S, et al. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol 1999;415:145–159.

    Article  PubMed  CAS  Google Scholar 

  67. Bourgin P, Huitron-Resendiz S, Spier AD, et al. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci 2000;20:7760–7765.

    PubMed  CAS  Google Scholar 

  68. Siegel JM. Narcolepsy. Sci Am 2000;282:76–81.

    Article  Google Scholar 

  69. Blanco-Centurion C, Gerashchenko D, Salin-Pascual R, Shiromani PJ. Effects of hypocretin2-saporin and antidopamine-beta-hydroxylase saporin neurotoxic lesions of the dorsolateral pons on sleep and muscle tone. Eur J Neurosci 2004;19:2741–2752.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Blanco-Centurion, C., Gerashchenko, D., Murillo-Rodriguez, E., Desarnaud, F., Shiromani, P.J. (2005). The Use of Saporin Conjugates to Dissect Neurons Responsible for Sleep and Wakefulness. In: Wiley, R.G., Lappi, D.A. (eds) Molecular Neurosurgery With Targeted Toxins. Humana Press. https://doi.org/10.1007/978-1-59259-896-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-896-0_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-199-8

  • Online ISBN: 978-1-59259-896-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics