Skip to main content

Immunohistochemistry (IHC): Chromogenic Detection of 3-Phosphohistidine Proteins in Formaldehyde-Fixed, Frozen Mouse Liver Tissue Sections

  • Protocol
  • First Online:
Histidine Phosphorylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2077))

Abstract

The development of antibodies that specifically detect histidine-phosphorylated proteins is a recent achievement and allows potential roles of histidine phosphorylated proteins in pathological and physiological conditions to be characterized. Immunohistochemical analyses enable the detection of proteins in tissues and can reveal alterations to the quantity and/or localization of these proteins through comparisons of normal and diseased specimens. However, the sensitivity of phosphohistidine modifications to phosphatases, acidic pH, and elevated temperatures poses unique challenges to the detection process and requires a protocol that bypasses traditional procedures utilizing paraffin-embedding and antigen-retrieval methods. Here, we detail a method for a brief fixation by 4% (v/v) paraformaldehyde on freshly collected tissues in the presence of PhosSTOP to block phosphatase activity, followed by a float on sucrose to protect the tissue prior to freezing. Specimens are then embedded in a cryopreservation medium in molds and frozen using an isoflurane, dry ice bath to best preserve the tissue morphology and phosphohistidine signal. We validate this technique in normal mouse liver using SC44-1, a monoclonal anti-3-pHis antibody used to uncover a role for a protein histidine phosphatase as a tumor suppressor in the liver. Furthermore, we demonstrate that the antibody signal can be eliminated by preincubating SC44-1 with a peptide treated with phosphoramidate to phosphorylate histidine residues. Thus, we present an IHC protocol suitable for specific detection of 3-phosphohistidine proteins in mouse liver tissue, and suggest that this can be used as a starting point for optimization of IHC using other phosphohistidine antibodies or in other tissue types, generating information that will enhance our understanding of phosphohistidine in models of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuhs SR, Meisenhelder J, Aslanian A, Ma L, Zagorska A, Stankova M, Binnie A, Al-Obeidi F, Mauger J, Lemke G, Yates JR 3rd, Hunter T (2015) Monoclonal 1- and 3-phosphohistidine antibodies: new tools to study histidine phosphorylation. Cell 162(1):198–210. https://doi.org/10.1016/j.cell.2015.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kee JM, Oslund RC, Couvillon AD, Muir TW (2015) A second-generation phosphohistidine analog for production of phosphohistidine antibodies. Org Lett 17(2):187–189. https://doi.org/10.1021/ol503320p

    Article  CAS  PubMed  Google Scholar 

  3. Kee JM, Oslund RC, Perlman DH, Muir TW (2013) A pan-specific antibody for direct detection of protein histidine phosphorylation. Nat Chem Biol 9(7):416–421. https://doi.org/10.1038/nchembio.1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kee JM, Villani B, Carpenter LR, Muir TW (2010) Development of stable phosphohistidine analogues. J Am Chem Soc 132(41):14327–14329. https://doi.org/10.1021/ja104393t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hindupur SK, Colombi M, Fuhs SR, Matter MS, Guri Y, Adam K, Cornu M, Piscuoglio S, Ng CKY, Betz C, Liko D, Quagliata L, Moes S, Jenoe P, Terracciano LM, Heim MH, Hunter T, Hall MN (2018) The protein histidine phosphatase LHPP is a tumour suppressor. Nature 555(7698):678–682. https://doi.org/10.1038/nature26140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai X, Srivastava S, Surindran S, Li Z, Skolnik EY (2014) Regulation of the epithelial Ca(2)(+) channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1. Mol Biol Cell 25(8):1244–1250. https://doi.org/10.1091/mbc.E13-04-0180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khan I, Steeg PS (2018) The relationship of NM23 (NME) metastasis suppressor histidine phosphorylation to its nucleoside diphosphate kinase, histidine protein kinase and motility suppression activities. Oncotarget 9(12):10185–10202. https://doi.org/10.18632/oncotarget.23796

    Article  PubMed  Google Scholar 

  8. Panda S, Srivastava S, Li Z, Vaeth M, Fuhs SR, Hunter T, Skolnik EY (2016) Identification of PGAM5 as a mammalian protein histidine phosphatase that plays a central role to negatively regulate CD4(+) T cells. Mol Cell 63(3):457–469. https://doi.org/10.1016/j.molcel.2016.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Srivastava S, Li Z, Soomro I, Sun Y, Wang J, Bao L, Coetzee WA, Stanley CA, Li C, Skolnik EY (2018) Regulation of KATP channel trafficking in pancreatic beta-cells by protein histidine phosphorylation. Diabetes 67(5):849–860. https://doi.org/10.2337/db17-1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Srivastava S, Panda S, Li Z, Fuhs SR, Hunter T, Thiele DJ, Hubbard SR, Skolnik EY (2016) Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1. eLife 5. https://doi.org/10.7554/eLife.16093

  11. Srivastava S, Zhdanova O, Di L, Li Z, Albaqumi M, Wulff H, Skolnik EY (2008) Protein histidine phosphatase 1 negatively regulates CD4 T cells by inhibiting the K+ channel KCa3.1. Proc Natl Acad Sci U S A 105(38):14442–14446. https://doi.org/10.1073/pnas.0803678105

    Article  PubMed  PubMed Central  Google Scholar 

  12. Matthews HR, MacKintosh C (1995) Protein histidine phosphatase activity in rat liver and spinach leaves. FEBS Lett 364(1):51–54

    Article  CAS  PubMed  Google Scholar 

  13. Kowalewska K, Stefanowicz P, Ruman T, Fraczyk T, Rode W, Szewczuk Z (2010) Electron capture dissociation mass spectrometric analysis of lysine-phosphorylated peptides. Biosci Rep 30(6):433–443. https://doi.org/10.1042/BSR20090167

    Article  CAS  PubMed  Google Scholar 

  14. Ek P, Ek B, Zetterqvist O (2015) Phosphohistidine phosphatase 1 (PHPT1) also dephosphorylates phospholysine of chemically phosphorylated histone H1 and polylysine. Ups J Med Sci 120(1):20–27. https://doi.org/10.3109/03009734.2014.996720

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wei YF, Matthews HR (1991) Identification of phosphohistidine in proteins and purification of protein-histidine kinases. Methods Enzymol 200:388–414

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Hunter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luhtala, N., Hunter, T. (2020). Immunohistochemistry (IHC): Chromogenic Detection of 3-Phosphohistidine Proteins in Formaldehyde-Fixed, Frozen Mouse Liver Tissue Sections. In: Eyers, C. (eds) Histidine Phosphorylation. Methods in Molecular Biology, vol 2077. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9884-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9884-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9883-8

  • Online ISBN: 978-1-4939-9884-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics