Skip to main content

Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins

  • Protocol
  • First Online:
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2073))

Abstract

The fungal hydrophobins are small proteins that are able to self-assemble spontaneously into amphipathic monolayers at hydrophobic:hydrophilic interfaces. These protein monolayers can reverse the wettability of a surface, making them suitable for increasing the biocompatibility of many hydrophobic nanomaterials. One subgroup of this family, the class I hydrophobins, forms monolayers that are composed of extremely robust amyloid-like fibrils, called rodlets. Here, we describe the protocols for the production and purification of recombinant hydrophobins and oxidative refolding to a biologically active, soluble, monomeric form. We describe methods to trigger the self-assembly into the fibrillar rodlet state and techniques to characterize the physicochemical properties of the polymeric forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linder MB, Szilvay GR, Nakari-Setala T, Penttila ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29(5):877–896. https://doi.org/10.1016/j.femsre.2005.01.004

    Article  CAS  Google Scholar 

  2. Wosten HA (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646. https://doi.org/10.1146/annurev.micro.55.1.625

    Article  CAS  Google Scholar 

  3. Wosten HA, de Vocht ML (2000) Hydrophobins, the fungal coat unravelled. Biochim Biophys Acta 1469(2):79–86

    Article  CAS  Google Scholar 

  4. van der Vegt W, van der Mei HC, Wösten HAB, Wessels JGH, Busscher HJ (1996) A comparison of the surface activity of the fungal hydrophobin SC3p with those of other proteins. Biophys Chem 57(2):253–260. https://doi.org/10.1016/0301-4622(95)00059-7

    Article  Google Scholar 

  5. Sunde M, Kwan AH, Templeton MD, Beever RE, Mackay JP (2008) Structural analysis of hydrophobins. Micron 39(7):773–784. https://doi.org/10.1016/j.micron.2007.08.003

    Article  CAS  Google Scholar 

  6. Lo V, Ren Q, Pham C, Morris V, Kwan A, Sunde M (2014) Fungal hydrophobin proteins produce self-assembling protein films with diverse structure and chemical stability. Nano 4(3):827

    Google Scholar 

  7. Szilvay GR, Paananen A, Laurikainen K, Vuorimaa E, Lemmetyinen H, Peltonen J, Linder MB (2007) Self-assembled hydrophobin protein films at the air-water interface: structural analysis and molecular engineering. Biochemistry 46(9):2345–2354. https://doi.org/10.1021/bi602358h

    Article  CAS  Google Scholar 

  8. Hakanpaa J, Linder M, Popov A, Schmidt A, Rouvinen J (2006) Hydrophobin HFBII in detail: ultrahigh-resolution structure at 0.75 a. Acta Crystallogr D Biol Crystallogr 62(Pt 4):356–367. https://doi.org/10.1107/S0907444906000862

    Article  CAS  Google Scholar 

  9. Hakanpaa J, Paananen A, Askolin S, Nakari-Setala T, Parkkinen T, Penttila M, Linder MB, Rouvinen J (2004) Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J Biol Chem 279(1):534–539. https://doi.org/10.1074/jbc.M309650200

    Article  CAS  Google Scholar 

  10. Hakanpaa J, Szilvay GR, Kaljunen H, Maksimainen M, Linder M, Rouvinen J (2006) Two crystal structures of Trichoderma reesei hydrophobin HFBI–the structure of a protein amphiphile with and without detergent interaction. Protein Sci 15(9):2129–2140. https://doi.org/10.1110/ps.062326706

    Article  CAS  PubMed Central  Google Scholar 

  11. Ren Q, Kwan AH, Sunde M (2016) Solution structure and interface-driven self-assembly of NC2, a new member of the class II hydrophobin proteins. Proteins 84(9):1334–1334. https://doi.org/10.1002/prot.25099

    Article  CAS  Google Scholar 

  12. Kwan AH, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP (2006) Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci U S A 103(10):3621–3626. https://doi.org/10.1073/pnas.0505704103

    Article  CAS  PubMed Central  Google Scholar 

  13. Morris VK, Kwan AH, Sunde M (2013) Analysis of the structure and conformational states of DewA gives insight into the assembly of the fungal hydrophobins. J Mol Biol 425(2):244–256. https://doi.org/10.1016/j.jmb.2012.10.021

    Article  CAS  Google Scholar 

  14. Pham CL, Rey A, Lo V, Soules M, Ren Q, Meisl G, Knowles TP, Kwan AH, Sunde M (2016) Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. Sci Rep 6:25288. https://doi.org/10.1038/srep25288

    Article  CAS  PubMed Central  Google Scholar 

  15. Gandier JA, Langelaan DN, Won A, O’Donnell K, Grondin JL, Spencer HL, Wong P, Tillier E, Yip C, Smith SP, Master ER (2017) Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity class I subdivision. Sci Rep 7:45863. https://doi.org/10.1038/srep45863

    Article  CAS  PubMed Central  Google Scholar 

  16. Sunde M, Pham CLL, Kwan AH (2017) Molecular characteristics and biological functions of surface-active and surfactant proteins. Annu Rev Biochem 86:585–608. https://doi.org/10.1146/annurev-biochem-061516-044847

    Article  CAS  Google Scholar 

  17. Reuter LJ, Bailey MJ, Joensuu JJ, Ritala A (2014) Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells. Plant Biotechnol J 12(4):402–410. https://doi.org/10.1111/pbi.12147

    Article  CAS  Google Scholar 

  18. Reuter LJ, Shahbazi MA, Makila EM, Salonen JJ, Saberianfar R, Menassa R, Santos HA, Joensuu JJ, Ritala A (2017) Coating nanoparticles with plant-produced transferrin-hydrophobin fusion protein enhances their uptake in cancer cells. Bioconjug Chem 28(6):1639–1648. https://doi.org/10.1021/acs.bioconjchem.7b00075

    Article  CAS  Google Scholar 

  19. Kwan AH, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M (2008) The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J Mol Biol 382(3):708–720. https://doi.org/10.1016/j.jmb.2008.07.034

    Article  CAS  Google Scholar 

  20. Auvinen H, Zhang H, Nonappa KA, Niemela EH, Nummelin S, Correia A, Santos HA, Linko V, Kostiainen MA (2017) Protein coating of DNA nanostructures for enhanced stability and immunocompatibility. Adv Healthc Mater 6(18). https://doi.org/10.1002/adhm.201700692

  21. Gazzera L, Corti C, Pirrie L, Paananen A, Monfredini A, Cavallo G, Bettini S, Giancane G, Valli L, Linder MB, Resnati G, Milani R, Metrangolo P (2015) Hydrophobin as a nanolayer primer that enables the fluorinated coating of poorly reactive polymer surfaces. Adv Mater Interfaces 2:14. https://doi.org/10.1002/Admi.201500170.Artn1500170

    Article  Google Scholar 

  22. Tao J, Wang YY, Xiao YJ, Yao P, Chen C, Zhang DH, Pang W, Yang HT, Sun D, Wang ZF, Liu J (2017) One-step exfoliation and functionalization of graphene by hydrophobin for high performance water molecular sensing. Carbon 116:695–702. https://doi.org/10.1016/j.carbon.2017.02.052

    Article  CAS  Google Scholar 

  23. Catanzariti AM, Soboleva TA, Jans DA, Board PG, Baker RT (2004) An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci 13(5):1331–1339. https://doi.org/10.1110/ps.04618904

    Article  CAS  PubMed Central  Google Scholar 

  24. Kwan AH, Mobli M, Gooley PR, King GF, Mackay JP (2011) Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS J 278(5):687–703. https://doi.org/10.1111/j.1742-4658.2011.08004.x

    Article  CAS  Google Scholar 

  25. Wu X, Wu D, Lu Z, Chen W, Hu X, Ding Y (2009) A novel method for high-level production of TEV protease by superfolder GFP tag. J Biomed Biotechnol 2009:8. https://doi.org/10.1155/2009/591923

    Article  CAS  Google Scholar 

  26. Schrödinger L The PyMOL molecular graphics system, Version 1.7.4

    Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Health and Medical Research Council of Australia (CDA402831) and the Australian Research Council (LP0776672, DP0879121 and DP150104227). V. Lo was supported by an Australian Postgraduate Award and S. Ball by a Research Training Program stipend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Sunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ball, S.R., Pham, C.L.L., Lo, V., Morris, V.K., Kwan, A.H., Sunde, M. (2020). Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins. In: Gerrard, J., Domigan, L. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 2073. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9869-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9869-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9868-5

  • Online ISBN: 978-1-4939-9869-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics