Skip to main content

Using C. elegans to Study the Effects of Toxins in Sensory Ion Channels In Vivo

  • Protocol
  • First Online:
Snake and Spider Toxins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2068))

Abstract

Caenorhabditis elegans is a powerful animal model in which transgenesis, behavior, and physiology can be merged to study in vivo the effect of natural and synthetic agonists in sensory ion channels. Worms have polymodal sensory neurons (like the ASH pair) that couple ion channel activation with a robust and easily scorable aversive-like behavior. We expressed the transient receptor potential vanilloid 1 (TRPV1) channel from rat (r) in worms’ ASH neurons and determined its sensitivity to the tarantula double-knot toxin (DkTx) and the active component of chili peppers (capsaicin). This chapter describes protocols for generating and maintaining transgenic rTRPV1 worms to determine dose-dependent behavior. The goal is to provide an efficient tool to characterize the function of sensory channels (wild type and mutants) in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284. https://doi.org/10.1016/j.cell.2009.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824. https://doi.org/10.1038/39807

    Article  CAS  PubMed  Google Scholar 

  3. Geron M, Hazan A, Priel A (2017) Animal toxins providing insights into TRPV1 activation mechanism. Toxins 9:326–319. https://doi.org/10.3390/toxins9100326

    Article  CAS  PubMed Central  Google Scholar 

  4. Bohlen CJ, Priel A, Zhou S, King D, Siemens J, Julius D (2010) A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141:834–845. https://doi.org/10.1016/j.cell.2010.03.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hilliard MA, Apicella AJ, Kerr R, Suzuki H, Bazzicalupo P, Schafer WR (2005) In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J 24:63–72. https://doi.org/10.1038/sj.emboj.7600493

    Article  CAS  PubMed  Google Scholar 

  6. Tobin D, Madsen D, Kahn-Kirby A, Peckol E, Moulder G, Barstead R, Maricq A, Bargmann C (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35:307–318

    Article  CAS  Google Scholar 

  7. Kahn-Kirby AH, Dantzker JLM, Apicella AJ, Schafer WR, Browse J, Bargmann CI, Watts JL (2004) Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 119:889–900. https://doi.org/10.1016/j.cell.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  8. Caires R, Sierra-Valdez FJ, Millet JRM, Herwig JD, Roan E, Vasquez V, Cordero-Morales JF (2017) Omega-3 fatty acids modulate TRPV4 function through plasma membrane remodeling. Cell Rep 21:246–258. https://doi.org/10.1016/j.celrep.2017.09.029

    Article  CAS  PubMed  Google Scholar 

  9. Geron M, Kumar R, Zhou W, Faraldo-Gómez JD, Vásquez V, Priel A (2018) TRPV1 pore turret dictates distinct DkTx and capsaicin gating. PNAS 115(50):E11837–E11846. https://doi.org/10.1073/pnas.1809662115

    Article  CAS  PubMed  Google Scholar 

  10. Stiernagle T (2006) Maintenance of C. elegans. WormBook:1–11. https://doi.org/10.1895/wormbook.1.101.1

  11. Redemann S, Schloissnig S, Ernst S, Pozniakowsky A, Ayloo S, Hyman AA, Bringmann H (2011) Codon adaptation–based control of protein expression in C. elegans. Nat Methods 8:250–254. https://doi.org/10.1038/nmeth.1565

    Article  CAS  PubMed  Google Scholar 

  12. Frøkjaer-Jensen C, Davis MW, Ailion M, Jorgensen EM (2012) Improved Mos1-mediated transgenesis in C. elegans. Nat Methods 9:117–118. https://doi.org/10.1038/nmeth.1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evans TC (2006) Transformation and microinjection. WormBook:1–15. https://doi.org/10.1895/wormbook.1.108.1

  14. Hart A (2006) Behavior. WormBook. https://doi.org/10.1895/wormbook.1.87.1

  15. Garrity PA, Goodman MB, Samuel AD, Sengupta P (2010) Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. Genes Dev 24:2365–2382. https://doi.org/10.1101/gad.1953710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. J.F. Cordero-Morales (University of Tennessee Health Science Center), Dr. A. Priel (Hebrew University of Jerusalem), and Dr. C. Hopkins (NemaMetrix, Inc.) for their insightful comments. This work was supported by a start-up research grant from the United States—Israel Binational Science Foundation (BSF) [Grant #2015221] and by the American Heart Association [Grant # 16SDG26700010] to VV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Vásquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vásquez, V. (2020). Using C. elegans to Study the Effects of Toxins in Sensory Ion Channels In Vivo. In: Priel, A. (eds) Snake and Spider Toxins. Methods in Molecular Biology, vol 2068. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9845-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9845-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9844-9

  • Online ISBN: 978-1-4939-9845-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics