Skip to main content

Single-Probe Mass Spectrometry Analysis of Metabolites in Single Cells

  • Protocol
  • First Online:
Book cover Single Cell Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2064))

Abstract

Mass spectrometry (MS) is an indispensable analytical technique for bioanalysis. Based on the measurement of mass/charge ratios (m/z) of ions, MS can be used for sensitive detection and accurate identification of species of interest. In traditional studies, MS is utilized to measure analytes in prepared solutions or gas-phase samples. Benefited from recent development of sampling and ionization approaches, MS has been extensively applied to the analysis of broad ranges of biological samples. We have developed a new device, the Single-probe, that can be used for in situ, real-time MS analysis of metabolites inside individual living cells. The Single-probe is a miniaturized multifunctional sampling and ionization device that is directly coupled to the mass spectrometer. With a sampling tip size smaller than 10 μm, we can insert the Single-probe tip into single cells to extract intracellular compounds, which are analyzed using MS in real-time. We have successfully used the Single-probe MS technique to detect a variety of endogenous and exogenous cellular metabolites in individual eukaryotic cells. Single cell mass spectrometry (SCMS) is a new scientific technology that has the potential to reshape approaches in biological and pharmaceutical bioanalytical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson H, van den Berg A (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15(1):44–49

    Article  CAS  Google Scholar 

  2. Wang DJ, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28(6):281–290

    Article  CAS  Google Scholar 

  3. Rubakhin SS, Romanova EV, Nemes P, Sweedler JV (2011) Profiling metabolites and peptides in single cells. Nat Methods 8(4):S20–S29

    Article  CAS  Google Scholar 

  4. Dominguez MH, Chattopadhyay PK, Ma S, Lamoreaux L, McDavid A, Finak G, Gottardo R, Koup RA, Roederer M (2013) Highly multiplexed quantitation of gene expression on single cells. J Immunol Methods 391(1–2):133–145

    Article  CAS  Google Scholar 

  5. Powell AA, Talasaz AH, Zhang HY, Coram MA, Reddy A, Deng G, Telli ML, Advani RH, Carlson RW, Mollick JA, Sheth S, Kurian AW, Ford JM, Stockdale FE, Quake SR, Pease RF, Mindrinos MN, Bhanot G, Dairkee SH, Davis RW, Jeffrey SS (2012) Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 7(5)

    Article  CAS  Google Scholar 

  6. Citri A, Pang ZPP, Sudhof TC, Wernig M, Malenka RC (2012) Comprehensive qPCR profiling of gene expression in single neuronal cells. Nat Protoc 7(1):118–127

    Article  CAS  Google Scholar 

  7. Narsinh KH, Sun N, Sanchez-Freire V, Lee AS, Almeida P, Hu SJ, Jan T, Wilson KD, Leong D, Rosenberg J, Yao M, Robbins RC, Wu JC (2011) Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J Clin Investig 121(3):1217–1221

    Article  CAS  Google Scholar 

  8. Pacholski ML, Winograd N (1999) Imaging with mass spectrometry. Chem Rev 99(10):2977–3006

    Article  CAS  Google Scholar 

  9. Chughtai K, Heeren RMA (2010) Mass spectrometric imaging for biomedical tissue analysis. Chem Rev 110(5):3237–3277

    Article  CAS  Google Scholar 

  10. Lanni EJ, Rubakhin SS, Sweedler JV (2012) Mass spectrometry imaging and profiling of single cells. J Proteome 75(16):5036–5051

    Article  CAS  Google Scholar 

  11. Berry KAZ, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC (2011) MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 111(10):6491–6512

    Article  Google Scholar 

  12. Amantonico A, Oh JY, Sobek J, Heinemann M, Zenobi R (2008) Mass spectrometric method for analyzing metabolites in yeast with single cell sensitivity. Angewandte Chemie-International Edition 47(29):5382–5385

    Article  CAS  Google Scholar 

  13. Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79(21):8098–8106

    Article  CAS  Google Scholar 

  14. Greving MP, Patti GJ, Siuzdak G (2011) Nanostructure-initiator mass spectrometry metabolite analysis and imaging. Anal Chem 83(1):2–7

    Article  CAS  Google Scholar 

  15. Urban PL, Schmid T, Amantonico A, Zenobi R (2011) Multidimensional analysis of single algal cells by integrating microspectroscopy with mass spectrometry. Anal Chem 83(5):1843–1849

    Article  CAS  Google Scholar 

  16. Mellors JS, Jorabchi K, Smith LM, Ramsey JM (2010) Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal Chem 82(3):967–973

    Article  CAS  Google Scholar 

  17. Nemes P, Rubakhin SS, Aerts JT, Sweedler JV (2013) Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry. Nat Protoc 8(4):783–799

    Article  Google Scholar 

  18. Nemes P, Knolhoff AM, Rubakhin SS, Sweedler JV (2011) Metabolic differentiation of neuronal phenotypes by single-cell capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chem 83(17):6810–6817

    Article  CAS  Google Scholar 

  19. Fukano Y, Tsuyama N, Mizuno H, Date S, Takano M, Masujima T (2012) Drug metabolite heterogeneity in cultured single cells profiled by pico-trapping direct mass spectrometry. Nanomedicine-Uk 7(9):1365–1374

    Article  CAS  Google Scholar 

  20. Masujima T (2009) Live single-cell mass spectrometry. Anal Sci 25(8):953–960

    Article  CAS  Google Scholar 

  21. Mizuno H, Tsuyama N, Harada T, Masujima T (2008) Live single-cell video-mass spectrometry for cellular and subcellular molecular detection and cell classification. J Mass Spectrom 43(12):1692–1700

    Article  CAS  Google Scholar 

  22. Tsuyama N, Mizuno H, Tokunaga E, Masujima T (2008) Live single-cell molecular analysis by video-mass spectrometry. Anal Sci 24(5):559–561

    Article  CAS  Google Scholar 

  23. Tejedor ML, Mizuno H, Tsuyama N, Harada T, Masujima T (2012) In situ molecular analysis of plant tissues by live single-cell mass spectrometry. Anal Chem 84(12):5221–5228

    Article  Google Scholar 

  24. Miura D, Fujimura Y, Wariishi H (2012) In situ metabolomic mass spectrometry imaging: recent advances and difficulties. J Proteome 75(16):5052–5060

    Article  CAS  Google Scholar 

  25. Passarelli MK, Ewing AG (2013) Single-cell imaging mass spectrometry. Curr Opin Chem Biol 17(5):854–859

    Article  CAS  Google Scholar 

  26. Boggio KJ, Obasuyi E, Sugino K, Nelson SB, Agar NYR, Agar JN (2011) Recent advances in single-cell MALDI mass spectrometry imaging and potential clinical impact. Expert Rev Proteomics 8(5):591–604

    Article  CAS  Google Scholar 

  27. Tsuyama N, Mizuno H, Masujima T (2011) Mass spectrometry for cellular and tissue analyses in a very small region. Anal Sci 27(2):163–170

    Article  CAS  Google Scholar 

  28. Rao W, Pan N, Yang Z (2015) High resolution tissue imaging using the single-probe mass spectrometry under ambient conditions. J Am Soc Mass Spectrom 26(6):986–993

    Article  CAS  Google Scholar 

  29. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68(1):1–8

    Article  CAS  Google Scholar 

  30. Wilm M, Neubauer G, Mann M (1996) Parent ion scans of unseparated peptide mixtures. Anal Chem 68(3):527–533

    Article  CAS  Google Scholar 

  31. Lanekoff I, Heath BS, Liyu A, Thomas M, Carson JP, Laskin J (2012) Automated platform for high-resolution tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84(19):8351–8356

    Article  CAS  Google Scholar 

  32. Pan N, Rao W, Kothapalli NR, Liu R, Burgett AWG, Yang Z (2014) Anal Chem 86:9376–9380

    Article  CAS  Google Scholar 

  33. Schober Y, Guenther S, Spengler B, Rompp A (2012) Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chem 84(15):6293–6297

    Article  CAS  Google Scholar 

  34. Lal S, Mahajan A, Chen WN, Chowbay B (2010) Pharmacogenetics of target genes across doxorubicin disposition pathway: a review. Curr Drug Metab 11(1):115–128

    Article  CAS  Google Scholar 

  35. Chlebowski RT (1979) Adriamycin (doxorubicin) cardiotoxicity - review. West J Med 131(5):364–368

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Spencer CM, Faulds D (1994) Paclitaxel - a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 48(5):794–847

    Article  CAS  Google Scholar 

  37. Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H (2007) Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 6(5):609–621

    Article  CAS  Google Scholar 

  38. Burgett AWG, Poulsen TB, Wangkanont K, Anderson DR, Kikuchi C, Shimada K, Okubo S, Fortner KC, Mimaki Y, Kuroda M, Murphy JP, Schwalb DJ, Petrella EC, Cornella-Taracido I, Schirle M, Tallarico JA, Shair MD (2011) Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat Chem Biol 7(9):639–647

    Article  CAS  Google Scholar 

  39. Mimaki Y, Kuroda M, Takaashi Y, Sashida Y (1997) Concinnasteoside a, a new bisdesmosidic cholestane glycoside from the stems of Dracaena concinna. J Nat Prod 60(11):1203–1206

    Article  CAS  Google Scholar 

  40. Zhou Y, Garcia-Prieto C, Carney DA, Xu RH, Pelicano H, Kang Y, Yu WS, Lou CG, Kondo S, Liu JS, Harris DM, Estrov Z, Keating MJ, Jin ZD, Huang P (2005) OSW-1: a natural compound with potent anticancer activity and a novel mechanism of action. J Natl Cancer Inst 97(23):1781–1785

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Shaorong Liu at the University of Oklahoma for his generous support of our efforts, including the training and use of his laser micropipette puller. We would also like to thank Dr. Julia Laskin at the Pacific Northwest National Laboratory (PNNL) for her consultation and sharing the translation stage control program. This research was supported by grants from the Research Council of the University of Oklahoma Norman Campus, the American Society for Mass Spectrometry Research Award (sponsored by Waters Corporation), and Oklahoma Center for the Advancement of Science and Technology (grant HR 14-152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibo Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pan, N., Rao, W., Yang, Z. (2020). Single-Probe Mass Spectrometry Analysis of Metabolites in Single Cells. In: Shrestha, B. (eds) Single Cell Metabolism. Methods in Molecular Biology, vol 2064. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9831-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9831-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9829-6

  • Online ISBN: 978-1-4939-9831-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics