Skip to main content

Toward Single Cell Molecular Imaging by Matrix-Free Nanophotonic Laser Desorption Ionization Mass Spectrometry

  • Protocol
  • First Online:
Single Cell Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2064))

Abstract

In recent years, innovations in mass spectrometry imaging (MSI) have enabled simultaneous detection and mapping of biomolecules and xenobiotics directly from biological tissues and single cells. Matrix-assisted laser desorption ionization (MALDI) has been the most widely embraced MSI technique. However, this technique can exhibit ion suppression effects hindering metabolite coverage and possesses a narrow dynamic range. Nanophotonic platforms, e.g., silicon nanopost array (NAPA) structures, can be used as an alternative for matrix-free imaging of biological tissues. Here, we present a protocol for MSI of large and small adherent cell clusters by laser desorption ionization from NAPA with minimal sample preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taniguchi Y (2011) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells (vol. 329, p. 533, 2010). Science 334(6055):453–453

    CAS  Google Scholar 

  2. Caprioli RM (2014) Imaging mass spectrometry: molecular microscopy for enabling a new age of discovery. Proteomics 14(7–8):807–809. https://doi.org/10.1002/pmic.201300571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26(4):606–643. https://doi.org/10.1002/mas.20124

    Article  CAS  PubMed  Google Scholar 

  4. Zavalin A, Yang JH, Caprioli R (2013) Laser beam filtration for high spatial resolution MALDI imaging mass spectrometry. J Am Soc Mass Spectrom 24(7):1153–1156. https://doi.org/10.1007/s13361-013-0638-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schuerenberg M, Luebbert C, Deininger SO, Ketterlinus R, Suckau D (2007) MALDI tissue imaging: mass spectrometric localization of biomarkers in tissue slices. Nat Methods 4(5):iii–iiv

    Article  Google Scholar 

  6. Ferguson CN, Fowler JWM, Waxer JF, Gatti RA, Loo JA (2014) Mass spectrometry-based tissue imaging of small molecules. In: Woods AG, Darie CC (eds) Advancements of mass spectrometry in biomedical research, vol 806. Advances in experimental medicine and biology. Springer, New York, NY, pp 283–299. https://doi.org/10.1007/978-3-319-06068-2_12

    Chapter  Google Scholar 

  7. Bergman N, Shevchenko D, Bergquist J (2014) Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry. Anal Bioanal Chem 406(1):49–61. https://doi.org/10.1007/s00216-013-7471-3

    Article  CAS  PubMed  Google Scholar 

  8. Wei J, Buriak JM, Siuzdak G (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399(6733):243–246. https://doi.org/10.1038/20400

    Article  CAS  PubMed  Google Scholar 

  9. Northen TR, Yanes O, Northen MT, Marrinucci D, Uritboonthai W, Apon J, Golledge SL, Nordstrom A, Siuzdak G (2007) Clathrate nanostructures for mass spectrometry. Nature 449(7165):1033–U1033. https://doi.org/10.1038/nature06195

    Article  CAS  PubMed  Google Scholar 

  10. Patti GJ, Shriver LP, Wassif CA, Woo HK, Uritboonthai W, Apon J, Manchester M, Porter FD, Siuzdak G (2010) Nanostructure-initiator mass spectrometry (NIMS) imaging of brain cholesterol metabolites in Smith-Lemli-Opitz syndrome. Neuroscience 170(3):858–864. https://doi.org/10.1016/j.neuroscience.2010.07.038

    Article  CAS  PubMed  Google Scholar 

  11. Greving MP, Patti GJ, Siuzdak G (2011) Nanostructure-initiator mass spectrometry metabolite analysis and imaging. Anal Chem 83(1):2–7. https://doi.org/10.1021/ac101565f

    Article  CAS  PubMed  Google Scholar 

  12. Walker BN, Stolee JA, Pickel DL, Retterer ST, Vertes A (2010) Tailored silicon nanopost arrays for resonant nanophotonic ion production. J Phys Chem C 114(11):4835–4840. https://doi.org/10.1021/jp9110103

    Article  CAS  Google Scholar 

  13. Stopka SA, Rong C, Korte AR, Yadavilli S, Nazarian J, Razunguzwa TT, Morris NJ, Vertes A (2016) Molecular imaging of biological samples on nanophotonic laser desorption ionization platforms. Angew Chem Int Ed 55(14):4482–4486. https://doi.org/10.1002/anie.201511691

    Article  CAS  Google Scholar 

  14. Fincher JA, Dyer JE, Korte AR, Yadavilli S, Morris NJ, Vertes A (2018) Matrix-free mass spectrometry imaging of mouse brain tissue sections on silicon nanopost arrays. J Comp Neurol 25(10):24566

    Google Scholar 

  15. Walker BN, Antonakos C, Retterer ST, Vertes A (2013) Metabolic differences in microbial cell populations revealed by nanophotonic ionization. Angew Chem Int Ed 52(13):3650–3653. https://doi.org/10.1002/anie.201207348

    Article  CAS  Google Scholar 

  16. Walker BN, Stolee JA, Vertes A (2012) Nanophotonic ionization for ultratrace and single-cell analysis by mass spectrometry. Anal Chem 84(18):7756–7762. https://doi.org/10.1021/ac301238k

    Article  CAS  PubMed  Google Scholar 

  17. Unal B (2011) Quenching influence of cell culture medium on photoluminescence and morphological structure of porous silicon. Appl Surf Sci 258(1):207–211. https://doi.org/10.1016/j.apsusc.2011.08.032

    Article  CAS  Google Scholar 

  18. Bhuyan MK, Rodriguez-Devora JI, Fraser K, Tseng TLB (2014) Silicon substrate as a novel cell culture device for myoblast cells. J Biomed Sci 21. https://doi.org/10.1186/1423-0127-21-47

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alvarez SD, Derfus AM, Schwartz MP, Bhatia SN, Sailor MJ (2009) The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors. Biomaterials 30(1):26–34. https://doi.org/10.1016/j.biomaterials.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  20. Lehto V-P, Vähä-Heikkilä K, Paski J, Salonen J (2005) Use of thermoanalytical methods in quantification of drug load in mesoporous silicon microparticles. J Therm Anal Calorim 80(2):393–397. https://doi.org/10.1007/s10973-005-0666-x

    Article  CAS  Google Scholar 

  21. Temiz Y, Lovchik RD, Kaigala GV, Delamarche E (2015) Lab-on-a-chip devices: how to close and plug the lab? Microelectron Eng 132:156–175. https://doi.org/10.1016/j.mee.2014.10.013

    Article  CAS  Google Scholar 

  22. Coffer JL, Whitehead MA, Nagesha DK, Mukherjee P, Akkaraju G, Totolici M, Saffie RS, Canham LT (2005) Porous silicon-based scaffolds for tissue engineering and other biomedical applications. Phys Status Solidi A 202(8):1451–1455. https://doi.org/10.1002/pssa.200461134

    Article  CAS  Google Scholar 

  23. Wang ST, Liu K, Liu JA, Yu ZTF, Xu XW, Zhao LB, Lee T, Lee EK, Reiss J, Lee YK, Chung LWK, Huang JT, Rettig M, Seligson D, Duraiswamy KN, Shen CKF, Tseng HR (2011) Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed 50(13):3084–3088. https://doi.org/10.1002/anie.201005853

    Article  CAS  Google Scholar 

  24. Fu JP, Wang YK, Yang MT, Desai RA, Yu XA, Liu ZJ, Chen CS (2010) Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7(9):733–U795. https://doi.org/10.1038/nmeth.1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Clercq E (2005) Recent highlights in the development of new antiviral drugs. Curr Opin Microbiol 8(5):552–560. https://doi.org/10.1016/j.mib.2005.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Otterbein LE, Bach FH, Alam J, Soares M, Lu HT, Wysk M, Davis RJ, Flavell RA, Choi AMK (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6(4):422–428

    Article  CAS  PubMed  Google Scholar 

  27. Mirbagheri M, Adibnia V, Hughes BR, Waldman SD, Banquy X, Hwang DK (2019) Advanced cell culture platforms: a growing quest for emulating natural tissues. Mater Horiz 6(1):45–71. https://doi.org/10.1039/c8mh00803e

    Article  CAS  Google Scholar 

  28. Morris NJ, Anderson H, Thibeault B, Vertes A, Powell MJ, Razunguzwa TT (2015) Laser desorption ionization (LDI) silicon nanopost array chips fabricated using deep UV projection lithography and deep reactive ion etching. RSC Adv 5(88):72051–72057. https://doi.org/10.1039/c5ra11875a

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research was sponsored by the U.S. Army Research Office and the Defense Advanced Research Projects Agency and was accomplished under Cooperative Agreement Number W911NF-14-2-0020. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office, DARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia A. Stopka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stopka, S.A., Vertes, A. (2020). Toward Single Cell Molecular Imaging by Matrix-Free Nanophotonic Laser Desorption Ionization Mass Spectrometry. In: Shrestha, B. (eds) Single Cell Metabolism. Methods in Molecular Biology, vol 2064. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9831-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9831-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9829-6

  • Online ISBN: 978-1-4939-9831-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics