Skip to main content

Construction of a Macrophage-Targeting Bio-nanocapsule-Based Nanocarrier

  • Protocol
  • First Online:
Drug Delivery Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2059))

Abstract

The construction protocol of bio-nanocapsule (BNC)-based nanocarriers, named GL-BNC and GL-virosome, for targeted drug delivery to macrophages is described here. First, genes encoding the Streptococcus sp. protein G-derived C2 domain (binds to IgG Fc) and Finegoldia magna protein L-derived B1 domain (binds to Igκ light chain) are prepared by PCR amplification. Subsequently, the genes encoding hepatic cell-specific binding domain of hepatitis B virus envelope L protein are replaced by these PCR products. The expression plasmid for this fused gene (encoding GL-fused L protein) can be used to transform Saccharomyces cerevisiae AH22R cells. To obtain GL-BNC, the transformed yeast cells are disrupted with glass beads, treated with heat, and then subjected to IgG affinity column chromatography followed by size exclusion column chromatography. In addition, GL-BNCs can be fused with liposomes to form GL-virosome. The targeted delivery of GL-BNC and GL-virosome to macrophages can be confirmed by in vitro phagocytosis assays using the murine macrophage cell line RAW264.7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14:986–995

    Article  CAS  Google Scholar 

  2. Baron R (1989) Molecular mechanisms of bone resorption by the osteoclast. Anat Rec 224:317–324

    Article  CAS  Google Scholar 

  3. Laria A, Lurati A, Marrazza M, Mazzocchi D, Re KA, Scarpellini M (2016) The macrophages in rheumatic diseases. J Inflamm Res 9:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Barrera P, Blom A, van Lent PL, van Bloois L, Beijnen JH, van Rooijen N et al (2000) Synovial macrophage depletion with clodronate-containing liposomes in rheumatoid arthritis. Arthritis Rheum 43:1951–1959

    Article  CAS  Google Scholar 

  5. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721

    Article  CAS  Google Scholar 

  6. Patel SK, Janjic JM (2015) Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics 5:150–172

    Article  CAS  Google Scholar 

  7. Li F, Yang Y, Zhu X, Huang L, Xu J (2015) Macrophage polarization modulates development of systemic lupus Erythematosus. Cell Physiol Biochem 37:1279–1288

    Article  CAS  Google Scholar 

  8. Clark RA, Kupper TS (2006) Misbehaving macrophages in the pathogenesis of psoriasis. J Clin Invest 116:2084–2087

    Article  CAS  Google Scholar 

  9. Singh Y, Pawar VK, Meher JG, Raval K, Kumar A, Shrivastava R et al (2017) Targeting tumor associated macrophages (TAMs) via nanocarriers. J Control Release 254:92–106

    Article  CAS  Google Scholar 

  10. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416

    Article  CAS  Google Scholar 

  11. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61

    Article  CAS  Google Scholar 

  12. Kelly C, Jefferies C, Cryan SA (2011) Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv 2011:727241

    Article  Google Scholar 

  13. Kuroda S, Otaka S, Miyazaki T, Nakao M, Fujisawa Y (1992) Hepatitis B virus envelope L protein particles. Synthesis and assembly in Saccharomyces cerevisiae, purification and characterization. J Biol Chem 267:1953–1961

    CAS  PubMed  Google Scholar 

  14. Yamada T, Iwasaki Y, Tada H, Iwabuki H, Chuah MK, VandenDriessche T et al (2003) Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat Biotechnol 21:885–890

    Article  CAS  Google Scholar 

  15. Kurata N, Shishido T, Muraoka M, Tanaka T, Ogino C, Fukuda H et al (2008) Specific protein delivery to target cells by antibody-displaying bionanocapsules. J Biochem 144:701–707

    Article  CAS  Google Scholar 

  16. Iijima M, Matsuzaki T, Kadoya H, Hatahira S, Hiramatsu S, Jung G et al (2010) Bionanocapsule-based enzyme-antibody conjugates for enzyme-linked immunosorbent assay. Anal Biochem 396:257–261

    Article  CAS  Google Scholar 

  17. Tsutsui Y, Tomizawa K, Nagita M, Michiue H, Nishiki T, Ohmori I et al (2007) Development of bionanocapsules targeting brain tumors. J Control Release 122:159–164

    Article  CAS  Google Scholar 

  18. Matsuo H, Yoshimoto N, Iijima M, Niimi T, Jung J, Jeong SY et al (2012) Engineered hepatitis B virus surface antigen L protein particles for in vivo active targeting of splenic dendritic cells. Int J Nanomedicine 7:3341–3350

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Iijima M, Araki K, Liu Q, Somiya M, Kuroda S (2019) Oriented immobilization to nanoparticles enhanced the therapeutic efficacy of antibody drugs. Acta Biomater 86:373–380

    Article  CAS  Google Scholar 

  20. Erntell M, Myhre EB, Sjobring U, Bjorck L (1988) Streptococcal protein G has affinity for both Fab- and Fc-fragments of human IgG. Mol Immunol 25:121–126

    Article  CAS  Google Scholar 

  21. Nilson BH, Solomon A, Bjorck L, Akerstrom B (1992) Protein L from Peptostreptococcus magnus binds to the kappa light chain variable domain. J Biol Chem 267:2234–2239

    CAS  PubMed  Google Scholar 

  22. Li H, Tatematsu K, Somiya M, Iijima M, Kuroda S (2018) Development of a macrophage-targeting and phagocytosis-inducing bio-nanocapsule-based nanocarrier for drug delivery. Acta Biomater 73:412–423

    Article  CAS  Google Scholar 

  23. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75:1929–1933

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to address our acknowledgement to Professor Takeshi Arakawa from the University of the Ryukyus for kindly providing the plasmids pCR2.1-SpGB and pET-21d-PpL.

This work was supported in part by JSPS KAKENHI (Grant-in Aid for Scientific Research (S) 16H06314 to S.K.; Grant-in-Aid for Scientific Research (C) 15K07840 to K.T.; Grant-in Aid for JSPS Fellows 18J21249 to H.L.), the Japan Agency for Medical Research and Development (AMED) (19fk0310105h0003 to S.K.), and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) “Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun’ichi Kuroda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, H., Somiya, M., Tatematsu, K., Kuroda, S. (2020). Construction of a Macrophage-Targeting Bio-nanocapsule-Based Nanocarrier. In: Jain, K. (eds) Drug Delivery Systems. Methods in Molecular Biology, vol 2059. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9798-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9798-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9797-8

  • Online ISBN: 978-1-4939-9798-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics