Skip to main content

Yeasts and Their Metabolic Impact on Wine Flavour

  • Chapter
  • First Online:
Yeasts in the Production of Wine

Abstract

Organoleptic characteristics of wine, aroma and flavour, are the most important characteristics that define the differences among the vast array of products throughout the world. Yeasts have a prominent role in determining the chemical composition of wine by several mechanisms: by producing enzymes that transform neutral grape compounds into flavour active compounds (pre-fermentative aroma), secondly by producing many hundreds of flavour active, secondary metabolites (fermentative and post-fermentative aroma) and lastly by extracting flavour components from grape solids and by autolytic degradation of dead yeast cells. These reactions vary with the yeast species and strains contributing to the fermentation. This review aims to present an overview on major achievements of yeast role in the formation of wine flavour. Firstly we illustrate the yeast metabolic activities involved in wine aroma production in function of wine styles as well as the main factors affecting flavour quality of wine. Furthermore, the influence of starter cultures (single or mixed) on wine flavour is discussed. Finally, novel methodologies to select wine yeasts in function of their influence on wine aroma are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andorrà, I., Berradre, M., Rozès, N., Mas, A., Guillamón, J. M., & Esteve-Zarzoso, B. (2010). Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations. European Food Research and Technology, 231, 215–224.

    Article  CAS  Google Scholar 

  • Anfang, N., Brajkovich, M., & Goddard, M. R. (2009). Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon blanc. Australian Journal of Grape and Wine Research, 15, 1–8.

    Article  CAS  Google Scholar 

  • Beckner Whitener, M. E., Carlin, S., Jacobson, D., Weighill, D., Divol, B., Conterno, L., Du Toit, M., & Vrhovsek, U. (2015). Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: A targeted approach. LWT – Food Science and Technology, 64, 412–422.

    Article  CAS  Google Scholar 

  • Belda, I., Ruiz, J., Alastruey-Izquierdo, A., Navascués, E., Marquina, D., & Santos, A. (2016). Unraveling the enzymatic basis of wine “flavorome”: A phylo-functional study of wine related yeast species. Frontiers in Microbiology, 7, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Belda, I., Ruiz, J., Esteban-Fernández, A., Navascués, E., Marquina, D., Santos, A., & Moreno-Arribas, M. V. (2017). Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules, 22, 189.

    Article  PubMed Central  CAS  Google Scholar 

  • Bely, M., Rinaldi, A., & Dubourdieu, D. (2003). Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentations. Journal of Bioscience and Bioengineering, 96(6), 507–512.

    Article  CAS  PubMed  Google Scholar 

  • Bely, M., Stoeckle, P., Masneuf-Pomarède, I., & Dubourdieu, D. (2008). Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. International Journal of Food Microbiology, 122, 312–320.

    Article  CAS  PubMed  Google Scholar 

  • Benito, S., Palomero, F., Calderón, F., Palmero, D., & Suárez-Lepe, J. A. (2014a). Selection of appropriate Schizosaccharomyces strains for winemaking. Food Microbiology, 42, 218–224.

    Article  CAS  PubMed  Google Scholar 

  • Benito, S., Palomero, F., Gálvez, L., Morata, A., Calderón, F., Palmero, D., & Suárez-Lepe, J. A. (2014b). Quality and composition of red wine fermented with Schizosaccharomyces pombe as sole fermentative yeast, and in mixed and sequential fermentations with Saccharomyces cerevisiae. Food Technology and Biotechnology, 52, 376–382.

    CAS  Google Scholar 

  • Benito, A., Calderón, F., Palomero, F. E., & Benito, S. (2015). Combine use of selected Schizosaccharomyces pombe and Lachancea thermotolerans yeast strains as an alternative to the traditional malolactic fermentation in red wine production. Molecules, 20, 9510–9523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchard, L., Darriet, P., & Dubourdieu, D. (2004). Reactivity of 3-mercaptohexanol in red wine: Impact of oxygen, phenolic fractions, and sulfur dioxide. American Journal of Enology and Viticulture, 55, 115–120.

    CAS  Google Scholar 

  • Bohlscheid, J. C., Fellman, J. K., Wang, X. D., Ansen, D., & Edwards, C. G. (2007). The influence of nitrogen and biotin interactions on the performance of Saccharomyces in alcoholic fermentations. Journal of Applied Microbiology, 102, 390–400.

    Article  CAS  PubMed  Google Scholar 

  • Bokulich, N. A., Collins, T. S., Masarweh, C., Allen, G., Heymann, H., Ebeler, S. E., & Mills, D. A. (2016). Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. MBio, 7, e00631–e00616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capece, A., Fiore, C., Maraz, A., & Romano, P. (2005). Molecular and technological approaches to evaluate strain biodiversity in Hanseniaspora uvarum of wine origin. Journal of Applied Microbiology, 98, 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Capece, A., Romaniello, R., Siesto, G., Pietrafesa, R., Massari, C., Poeta, C., & Romano, P. (2010). Selection of indigenous Saccharomyces cerevisiae strains for Nero d’Avola wine and evaluation of selected starter implantation in pilot fermentation. International Journal of Food Microbiology, 144, 187–192.

    Article  CAS  PubMed  Google Scholar 

  • Capece, A., Romaniello, R., Siesto, G., & Romano, P. (2012). Diversity of Saccharomyces cerevisiae yeasts associated to spontaneously fermenting grapes from an Italian “heroic vine-growing area”. Food Microbiology, 31, 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Capece, A., Granchi, L., Guerrini, S., Mangani, S., Romaniello, R., Vincenzini, M., & Romano, P. (2016). Diversity of Saccharomyces cerevisiae strains Iiolated from two Italian wine-producing regions. Frontiers in Microbiology, 7, 1018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrau, F. M., Medina, K., Boido, E., Farina, L., Gaggero, C., Dellacassa, E., Versini, G., & Henschke, P. A. (2005). De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters, 243, 107–115.

    Article  CAS  PubMed  Google Scholar 

  • Ciani, M., & Maccarelli, F. (1998). Oenological properties of non-Saccharomyces yeasts associated with wine-making. World Journal of Microbiology and Biotechnology, 14, 199–203.

    Article  CAS  Google Scholar 

  • Ciani, M., & Picciotti, G. (1995). The growth kinetics and fermentation behaviour of some non-Saccharomyces yeasts associated with wine-making. Biotechnology Letters, 17, 1247–1250.

    Article  CAS  Google Scholar 

  • Ciani, M., Capece, A., Comitini, F., Canonico, L., Siesto, G., & Romano, P. (2016). Yeast interactions in inoculated wine fermentation. Frontiers in Microbiology, 7, 555.

    PubMed  PubMed Central  Google Scholar 

  • Clemente-Jimenez, J. M., Mingorance-Cazorla, L., Martínez-Rodríguez, S., Las Heras-Vázquez, F. J., & Rodríguez-Vico, F. (2004). Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiology, 21, 149–155.

    Article  CAS  Google Scholar 

  • Clemente-Jiménez, J. M., Mingorance-Cazorla, L., Martínez-Rodríguez, S., Las Heras-Vázquez, F. J., & Rodríguez-Vico, F. (2005). Influence of sequential yeast mixtures on wine fermentation. International Journal of Food Microbiology, 98, 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Coetzee, C., & du Toit, W. J. (2012). A comprehensive review on Sauvignon blanc aroma with a focus on certain positive volatile thiols. Food Research International, 45, 287–298.

    Article  CAS  Google Scholar 

  • Comitini, F., Gobbi, M., Domizio, P., Romani, C., Lencioni, L., Mannazzu, I., & Ciani, M. (2011). Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiology, 28, 873–882.

    Article  CAS  PubMed  Google Scholar 

  • Comitini, F., Capece, A., Ciani, M., & Romano, P. (2017). New insights on the use of wine yeasts. Current Opinion in Food Science, 13, 44–49.

    Article  Google Scholar 

  • Cordente, A. G., Curtin, C. D., Varela, C., & Pretorius, I. S. (2012). Flavour-active wine yeasts. Applied Microbiology and Biotechnology, 96, 601–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero-Otero, R. R., Úbeda-Iranzo, J. F., Briones-Pérez, A. I., Potgieter, N. M., Arevalo, M. E., Pretorius, I. S., & van Rensburg, P. (2003). Characterization of the β-glucosidase activity produced by enological strains of non-Saccharomyces yeasts. Journal of Food Science, 68, 2564–2569.

    Article  CAS  Google Scholar 

  • Cozzolino, D., Flood, L., Bellon, J., Gishen, M., & De Barros Lopes, M. (2006). Combining near infrared spectroscopy and multivariate analysis as a tool to differentiate different strains of Saccharomyces cerevisiae: A metabolomic study. Yeast, 23, 1089–1096.

    Article  CAS  PubMed  Google Scholar 

  • Dashko, S., Zhou, N., Tinta, T., Sivilotti, P., Sternad Lemut, M., Trost, K., Gamero Lluna, A., Boekhout, T., Butinar, L., Vrhovsek, U., & Piskur, J. (2015). Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla. Journal of Industrial Microbiology & Biotechnology, 42, 997–1010.

    Article  CAS  Google Scholar 

  • de Orduña, R. M. (2010). Climate change associated effects on grape and wine quality and production. Food Research International, 43, 1844–1855.

    Article  CAS  Google Scholar 

  • Del Mónaco, S. M., Barda, N. B., Rubio, N. C., & Caballero, A. C. (2014). Selection and characterization of a Patagonian Pichia kudriavzevii for wine deacidification. Journal of Applied Microbiology, 117, 451–464.

    Article  PubMed  CAS  Google Scholar 

  • Delcroix, A., Gunata, Z., Sapis, J. C., Salmon, J. M., & Bayonove, C. (1994). Glycosidase activities of three enological yeast strains during wine making. Effect on the terpenol content of Muscat wine. American Journal of Enology and Viticulture, 45, 291–296.

    CAS  Google Scholar 

  • Dias, L., Pereira-da-Silva, S., Tavares, M., Malfeito-Ferreira, M., & Loureiro, V. (2003). Factors affecting the production of 4-ethylphenol by the yeast Dekkera bruxellensis in enological conditions. Food Microbiology, 20, 377–384.

    Article  CAS  Google Scholar 

  • du Toit, M., & Pretorius, I. S. (2000). Microbial spoilage and preservations of wine: Using weapons from nature’s own arsenal-a review. South African Journal of Enology and Viticulture, 21, 74–96.

    Google Scholar 

  • Dubourdieu, D., Tominaga, T., Masneuf, I., Peyrot des Gachons, C., & Murat, M. L. (2006). The role of yeasts in grape flavor development during fermentation: The example of Sauvignon blanc. American Journal of Enology and Viticulture, 57, 81–88.

    CAS  Google Scholar 

  • Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trends in Analytical Chemistry, 24, 285–294.

    Article  CAS  Google Scholar 

  • Englezos, V., Rantsiou, K., Torchio, F., Rolle, L., Gerbi, V., & Cocolin, L. (2015). Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations. International Journal of Food Microbiology, 199, 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Estévez, P., Gil Ma, L., & Falqué, E. (2004). Effects of seven yeast strains on the volatile composition of Palomino wines. International Journal of Food Science and Technology, 39, 61–69.

    Article  Google Scholar 

  • Ferraro, L., Fatichenti, F., & Ciani, M. (2000). Pilot scale vinification process using immobilized Candida stellata cells and Saccharomyces cerevisiae. Process Biochemistry, 35, 1125–1129.

    Article  CAS  Google Scholar 

  • Fleet, G. H., & Heard, G. M. (1993). Yeasts – growth during fermentation. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 27–54). Chur: Harwood Academic Publishers.

    Google Scholar 

  • Garcia, A., Carcel, C., Dulau, L., Samson, A., Aguera, E., Agosin, E., & Gunata, Z. (2002). Influence of a mixed culture with Debaryomyces vanriji and Saccharomyces cerevisiae on the volatiles of a Muscat wine. Journal of Food Science, 67, 1138–1143.

    Article  CAS  Google Scholar 

  • Gerbeaux, V., Jeudy, S., & Monamy, C. (2000). Study of phenol volatiles in Pinot noir wines in Burgundy. Bulletin de l’OIV, 73, 581–599.

    Google Scholar 

  • Gerbeaux, V., Vincent, B., & Bertrand, A. (2002). Influence of maceration temperature and enzymes on the content of volatile phenols in Pinot Noir wines. American Journal of Enology and Viticulture, 53, 131–137.

    Google Scholar 

  • Gobbi, M., Comitini, F., Domizio, P., Romani, C., Lencioni, L., Mannazzu, I., & Ciani, M. (2013). Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine. Food Microbiology, 33, 271–281.

    Article  CAS  PubMed  Google Scholar 

  • Goldner, M. C., Zamora, M., Di Leo Lira, P., Gianninoto, H., & Bandoni, A. (2009). Effect of ethanol level in the perception of aroma attributes and the detection of volatile compounds in red wine. Journal of Sensory Studies, 24, 243–257.

    Article  Google Scholar 

  • Gunata, Z., Bayonove, C., Baumes, R., & Cordonnier, R. (1985). The aroma of grapes. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. Journal of Chromatography, 331, 83–90.

    Article  CAS  Google Scholar 

  • Gunata, Z., Dugelay, I., Sapis, J. C., Baumes, R., & Bayonove, C. (1990). Action des glycosidases exogènes au cours de la vinification: Liberation de l’arôme à partir des précurseurs glycosidiques. Journal International des Sciences de la Vigne et du Vin, 24, 133–144.

    CAS  Google Scholar 

  • Hazelwood, L. A., Daran, J. M., van Maris, A. J. A., Pronk, J. T., & Dickinson, J. R. (2008). The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Applied and Environmental Microbiology, 74, 2259–2266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henick-Kling, T., Edinger, W., Daniel, P., & Monk, P. (1998). Selective effects of sulphur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine. Journal of Applied Microbiology, 84, 865–876.

    Article  CAS  Google Scholar 

  • Hernandez, L. F., Espinosa, J. C., Fernandez, M., & Briones, A. (2003). β-Glucosidase activity in a Saccharomyces cerevisiae wine strain. International Journal of Food Microbiology, 80, 171–176.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Orte, P., Cacho, J. F., & Ferreira, V. (2002). Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study. Journal of Agricultural and Food Chemistry, 50, 2891–2899.

    Article  CAS  PubMed  Google Scholar 

  • Jackowetz, J. N., Dierschke, S., & Mira de Orduña, R. (2011). Multifactorial analysis of acetaldehyde kinetics during alcoholic fermentation by Saccharomyces cerevisiae. Food Research International, 44, 310–316.

    Article  CAS  Google Scholar 

  • Jolly, N. P., Augustyn, O. P. H., & Pretorius, I. S. (2006). The role and use of non-Saccharomyces yeasts in wine production. South African Journal of Enology and Viticulture, 27(1), 15–39.

    CAS  Google Scholar 

  • Kim, D. H., Hong, Y. A., & Park, H. D. (2008). Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnology Letters, 30, 1633–1638.

    Article  CAS  PubMed  Google Scholar 

  • King, E. S., Kievit, R. L., Curtin, C., Swiegers, J. H., Pretorius, I. S., Bastian, S. E. P., & Francis, I. L. (2010). The effect of multiple yeasts co-inoculations on Sauvignon Blanc wine aroma composition, sensory properties and consumer preference. Food Chemistry, 122, 618–626.

    Article  CAS  Google Scholar 

  • Knight, S., Klaere, S., Fedrizzi, B., & Goddard, M. R. (2015). Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Scientific Reports, 5, 14233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrechts, M. G., & Pretorius, I. S. (2000). Yeast and its importance to wine aroma – a review. South African Journal of Enology and Viticulture, 21, 97–129.

    CAS  Google Scholar 

  • Lema, C., Garcia-Jares, C., Orriols, I., & Angulo, L. (1996). Contribution of Saccharomyces and non-Saccharomyces populations to the production of some components of Albariño wine aroma. American Journal of Enology and Viticulture, 47, 206–216.

    CAS  Google Scholar 

  • Manzanares, P., Rojas, V., Genovés, S., & Vallés, S. (2000). A preliminary search for anthocyanin-β-D-glucosidase activity in non-Saccharomyces wine yeasts. International Journal of Food Science and Technology, 35, 95–103.

    Article  CAS  Google Scholar 

  • Masneuf-Pomarède, I., Mansour, C., Marie-Laure, M., Tominaga, T., & Dubourdieu, D. (2006). Influence of fermentation temperature on volatile thiols concentrations in Sauvignon blanc wines. International Journal of Food Microbiology, 108, 385–390.

    PubMed  Google Scholar 

  • Mateo, J., Jimenez, M., Herta, T., & Pastor, A. (1992). Comparison of volatiles produced by four Saccharomyces cerevisiae strains isolated from Monastrell musts. American Journal of Enology and Viticulture, 43, 206–209.

    CAS  Google Scholar 

  • Mateo, J. J., Peris, L., Ibáñez, C., & Maicas, S. (2011). Characterization of glycolytic activities from non-Saccharomyces yeasts isolated from Bobal musts. Journal of Industrial Microbiology & Biotechnology, 38, 347–354.

    Article  CAS  Google Scholar 

  • Mauriello, G., Capece, A., D’Auria, M., Garde-Cerdán, T., & Romano, P. (2009). SPME-GC method as a tool to differentiate VOC profiles in Saccharomyces cerevisiae wine yeasts. Food Microbiology, 26, 246–252.

    Article  CAS  PubMed  Google Scholar 

  • Mazauric, J.-P., & Salmon, J.-P. (2005). Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines. Journal of Agricultural and Food Chemistry, 53, 5647–5653.

    Article  CAS  PubMed  Google Scholar 

  • Mendes-Ferreira, A., Clímaco, M. C., & Mendes Faia, A. (2001). The role of non-Saccharomyces species in realising glycosidic fraction of grape aroma components—a preliminary study. Journal of Applied Microbiology, 91, 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza, L. M., Manca de Nadra, M. C., & Farías, M. E. (2007). Kinetics and metabolic behavior of a composite culture of Kloeckera apiculata and Saccharomyces cerevisiae wine related strains. Biotechnology Letters, 29, 1057–1063.

    Article  CAS  PubMed  Google Scholar 

  • Millan, M. C., Moreno, J., Medina, M., & Ortega, J. M. (1991). Influence of the physiological state of the inoculum on fermentation of musts from Pedro Ximénez grapes by Saccharomyces cerevisiae. Microbios, 65, 87–95.

    CAS  PubMed  Google Scholar 

  • Moreira, N., Mendes, F., Hogg, T., & Vasconcelos, I. (2005). Alcohols, esters and heavy sulphur compounds production by pure and mixed cultures of apiculate wine yeasts. International Journal of Food Microbiology, 103, 285–294.

    Article  CAS  PubMed  Google Scholar 

  • Moreira, N., Mendes, F., Guedes de Pinho, P., Hogg, T., & Vasconcelos, I. (2008). Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must. International Journal of Food Microbiology, 124, 231–238.

    Article  CAS  PubMed  Google Scholar 

  • Murat, M. L., Masneuf, I., Darriet, P., et al. (2001). Effect of Saccharomyces cerevisiae yeast strains on the liberation of volatile thiols in Sauvignon blanc wine. American Journal of Enology and Viticulture, 52, 136–139.

    CAS  Google Scholar 

  • Nielsen, J., & Oliver, S. (2005). The next wave in metabolome analysis. Trends in Biotechnology, 23, 544–546.

    Article  CAS  PubMed  Google Scholar 

  • Nikolaou, E., Soufleros, E. H., Bouloumpasi, E., & Tzanetakis, N. (2006). Selection of indigenous Saccharomyces cerevisiae strains according to their oenological characteristics and vinification results. Food Microbiology, 23, 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Nykanen, L. (1986). Formation and occurrence of flavour compounds in wine and distilled alcoholic beverages. American Journal of Enology and Viticulture, 37, 84–96.

    CAS  Google Scholar 

  • Obreque-Slíer, E., Peñ-Neira, A., & Lopez-Solis, R. (2010). Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol. Journal of Agricultural and Food Chemistry, 58, 3729–3735.

    Article  PubMed  CAS  Google Scholar 

  • Office Internationale de la Vigne et du Vin. (2010). International code of oenological practices (p. 274). Paris: OIV.

    Google Scholar 

  • Padilla, B., Gil, J. V., & Manzanares, P. (2016). Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Frontiers in Microbiology, 7, 411.

    PubMed  PubMed Central  Google Scholar 

  • Park, H., & Hwang, Y. S. (2008). Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. Journal of Microbiology, 46, 542–548.

    Article  CAS  Google Scholar 

  • Peyrot Des Gachons, C., Tominaga, T., & Dubourdieu, D. (2002). Sulfur aroma precursor present in S-glutathione conjugate form: Identification of S-3-(hexan-1-ol)-glutathione in must from Vitis vinifera L. cv. Sauvignon blanc. Journal of Agricultural and Food Chemistry, 50, 4076–4079.

    Article  CAS  PubMed  Google Scholar 

  • Pretorius, I. S. (2000). Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast, 16, 675–729.

    Article  CAS  PubMed  Google Scholar 

  • Pretorius, I. S., & Høj, P. B. (2005). Grape and wine biotechnology: Challenges, opportunities and potential benefits. Australian Journal of Grape and Wine Research, 11, 83–108.

    Article  CAS  Google Scholar 

  • Rantsiou, K., Dolci, P., Giacosa, S., Torchio, F., Tofalo, R., Torriani, S., Suzzi, G., Rolle, L., & Cocolin, L. (2012). Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Applied and Environmental Microbiology, 78, 1987–1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regodón Mateos, J. A., Pérez-Nevado, F., & Ramírez Fernández, M. (2006). Influence of Saccharomyces cerevisiae yeast strain on the major volatile compounds of wine. Enzyme and Microbial Technology, 40, 151–157.

    Article  CAS  Google Scholar 

  • Renault, P., Coulon, J., Moine, V., Thibon, C., & Bely, M. (2016). Enhanced 3-sulfanylhexan-1-ol production in sequential mixed fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae reveals a situation of synergistic interaction between two industrial strains. Frontiers in Microbiology, 7, 293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribéreau-Gayon, P., Dubourdieu, D., Donéche, B., & Lonvaud, A. (2000a). Biochemistry of alcoholic fermentation and metabolic pathways of wine yeasts. Handbook of enology. In The microbiology of wine and vinifications (Vol. 1, pp. 51–74). New York: Wiley.

    Google Scholar 

  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000b). Handbook of enology. In The chemistry of wine stabilisation and treatments (Vol. 2). Chichester: Wiley.

    Google Scholar 

  • Rojas, V., Gil, J. V., Pinaga, F., & Manzanares, P. (2001). Studies on acetate ester production by non-Saccharomyces wine yeast. International Journal of Food Microbiology, 70, 283–289.

    Article  CAS  PubMed  Google Scholar 

  • Rojas, V., Gil, J. V., Manzanares, P., Gavara, R., Piñaga, F., & Flors, A. (2002). Measurement of alcohol acetyltransferase and ester hydrolase activities in yeast extracts. Enzyme and Microbial Technology, 30, 224–230.

    Article  CAS  Google Scholar 

  • Rojas, V., Gil, J., Piñaga, F., & Manzanares, P. (2003). Acetate ester formation in wine by mixed cultures in laboratory fermentations. International Journal of Food Microbiology, 86, 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Romano, P., & Suzzi, G. (1993). Sulfur dioxide and wine microorganisms. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 373–393). Chur: Harwood Academic Publishers.

    Google Scholar 

  • Romano, P., Suzzi, G., Comi, G., & Zironi, R. (1992). Higher alcohol and acetic acid production by apiculate wine yeasts. The Journal of Applied Bacteriology, 73, 126–130.

    Article  CAS  Google Scholar 

  • Romano, P., Suzzi, G., Turbanti, L., & Polsinelli, M. (1994). Acetaldehyde production in Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters, 118, 213–218.

    Article  CAS  PubMed  Google Scholar 

  • Romano, P., Fiore, C., Paraggio, M., Caruso, M., & Capece, A. (2003). Function of yeast species and strains in wine flavour. International Journal of Food Microbiology, 86, 169–180.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, R., Charrier, F., Razungles, A., & Baumes, R. (2006). Evidence for an alternative biogenetic pathway leading to 3-mercaptohexanol and 4-mercapto-4-methylpentan-2-one in wines. Analytica Chimica Acta, 563, 58–64.

    Article  CAS  Google Scholar 

  • Stribny, J., Querol, A., & Pérez-Torrado, R. (2016). Differences in enzymatic properties of the Saccharomyces kudriavzevii and Saccharomyces uvarum alcohol acetyltransferases and their impact on aroma-active compounds production. Frontiers in Microbiology, 7, 897.

    Article  PubMed  PubMed Central  Google Scholar 

  • Styger, G., Prior, B., & Bauer, F. F. (2011). Wine flavor and aroma. Journal of Industrial Microbiology & Biotechnology, 38, 1145–1159.

    Article  CAS  Google Scholar 

  • Swiegers, J. H., & Pretorius, I. S. (2005). Yeast modulation of wine flavour. Advances in Applied Microbiology, 57, 131–175.

    Article  CAS  PubMed  Google Scholar 

  • Swiegers, J., & Pretorius, I. S. (2007). Modulation of volatile sulfur compounds by wine yeast. Applied and Environmental Microbiology, 74, 954–960.

    CAS  Google Scholar 

  • Swiegers, J., Kievit, R., Siebert, T., Lattey, K., Bramley, B., Francis, I., King, E., & Pretorius, I. S. (2009). The influence of yeast on the aroma of Sauvignon Blanc wine. Food Microbiology, 26, 204–211.

    Article  CAS  PubMed  Google Scholar 

  • Tominaga, T., Baltenweck-Guyot, R., Peyrot de Gachons, C., & Dubourdieu, D. (2000). Contribution of volatile thiols to the aromas of white wines made from several Vitis vinifera grape varieties. American Journal of Enology and Viticulture, 51, 178–181.

    CAS  Google Scholar 

  • Torija, M. J., Rozes, N., Poblet, M., Guillamon, J. M., & Mas, A. (2003). Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. International Journal of Food Microbiology, 80, 47–53.

    Article  CAS  PubMed  Google Scholar 

  • Viana, F., Gil, J. V., Genovés, S., Vallés, S., & Manzanares, P. (2008). Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiology, 25, 778–785.

    Article  CAS  PubMed  Google Scholar 

  • Winter, G., Henschke, P. A., Higgins, V. J., Ugliano, M., & Curtin, C. D. (2011). Effects of rehydration nutrients on H2S metabolism and formation of volatile sulfur compounds by the wine yeast VL3. AMB Express, 1, 36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zott, K., Thibon, C., Bely, M., Lonvaud-Funel, A., Dubourdieu, D., & Masneuf-Pomarede, I. (2011). The grape must non-Saccharomyces microbial community: Impact on volatile thiol 1. release. International Journal of Food Microbiology, 151, 210–215.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Capece .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capece, A., Romano, P. (2019). Yeasts and Their Metabolic Impact on Wine Flavour. In: Romano, P., Ciani, M., Fleet, G. (eds) Yeasts in the Production of Wine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9782-4_2

Download citation

Publish with us

Policies and ethics