Skip to main content

Profiling of Active Microorganisms by Stable Isotope Probing—Metagenomics

  • Protocol
  • First Online:
Stable Isotope Probing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2046))

Abstract

Stable isotope probing (SIP) provides researchers a culture-independent method to retrieve nucleic acids from active microbial populations performing a specific metabolic activity in complex ecosystems. In recent years, the use of the SIP method in microbial ecology studies has been accelerated. This is partly due to the advances in sequencing and bioinformatics tools, which enable fast and reliable analysis of DNA and RNA from the SIP experiments. One of these sequencing tools, metagenomics, has contributed significantly to the body of knowledge by providing data not only on taxonomy but also on the key functional genes in specific metabolic pathways and their relative abundances. In this chapter, we provide a general background on the application of the SIP-metagenomics approach in microbial ecology and a workflow for the analysis of metagenomic datasets using the most up-to-date bioinformatics tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radajewski S, Ineson P, Parekh NR, Murrell CJ (2000) Stable isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  CAS  Google Scholar 

  2. Dunford EA, Neufeld JD (2012) DNA stable isotope probing (DNA-SIP). J Vis Exp 42:e2027

    Google Scholar 

  3. Eyice O, Namura M, Chen Y, Mead A, Samavedam S, Schäfer H (2015) SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. ISME J 9:2336–2348

    Article  CAS  PubMed  Google Scholar 

  4. Kowalczyk A, Eyice O, Schäfer H, Price OR, Finnegan CJ, van Egmond RA, Shaw LJ, Barrett G, Bending GD (2015) Characterization of para-nitrophenol-degrading microbial communities in river water by using functional markers and stable isotope probing. Appl Environ Microbiol 81:6890–6900

    Article  CAS  PubMed  Google Scholar 

  5. Neufeld JD, Schäfer H, Cox MJ, Boden R, McDonald IR, Murrell JC (2007) Stable isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J 1:480–491

    Article  CAS  PubMed  Google Scholar 

  6. Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, Murrell JC (2002) Identification of active methylotroph populations in an acidic forest soil by stable isotope probing. Microbiology 148:2331–2342

    Article  CAS  PubMed  Google Scholar 

  7. Neufeld JD, Vohra J, Dumont MG, Leuders T, Manefield M, Friedrich MW, Murrell JC (2007) DNA stable-isotope probing. Nat Protoc 2(4):860–866

    Article  CAS  PubMed  Google Scholar 

  8. Jameson E, Taubert M, Coyotzi S, Chen Y, Eyice O, Schäfer H, Murrell JC, Neufeld JD, Dumont MG (2017) DNA-, RNA- and protein-based stable-isotope probing for high-throughput biomarker analysis of active microorganisms. In: Metagenomics. Humana Press, New York, pp 57–74

    Chapter  Google Scholar 

  9. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganism. Microbiol Mol Biol Rev 68(4):669–685

    Article  CAS  PubMed  Google Scholar 

  10. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, Kosciolek T, McCall LI, McDonald D, Melnik AV, Morton JT, Navas J, Quinn RA, Sanders JG, Swafford AD, Thompson LR, Tripathi A, Xu ZJZ, Zaneveld JR, Zhu QY, Caporaso JG, Dorrestein PC (2018) Best practices for analysing microbiomes. Nat Rev Microbiol 16(7):410–422

    Article  CAS  Google Scholar 

  11. Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T (2013) Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31(2):154–165

    Article  CAS  PubMed  Google Scholar 

  12. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14(3):303–310

    Article  CAS  Google Scholar 

  13. Wellington EMH, Berry A, Krsek M (2003) Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol 6(3):295–301

    Article  CAS  Google Scholar 

  14. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  15. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583

    Article  CAS  PubMed  Google Scholar 

  16. Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32(19):3047–3048

    Article  CAS  PubMed  Google Scholar 

  17. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  Google Scholar 

  18. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Article  Google Scholar 

  19. Institute DJG BBDuk guide. Available online at: http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/

  20. Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH (2012) A reference-free algorithm for computational normalization of shotgun sequencing data. arXiv preprint arXiv:12034802

    Google Scholar 

  21. Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15(3):R46

    Article  PubMed  Google Scholar 

  22. Ounit R, Wanamaker S, Close TJ, Lonardi S (2015) CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics 16:236

    Article  PubMed  Google Scholar 

  23. Ainsworth D, Sternberg MJE, Raczy C, Butcher SA (2017) k-SLAM: accurate and ultra-fast taxonomic classification and gene identification for large metagenomic data sets. Nucleic Acids Res 45(4):1649–1656

    CAS  Google Scholar 

  24. Menzel P, Ng KL, Krogh A (2016) Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 7:11257

    Article  CAS  PubMed  Google Scholar 

  25. Kim D, Song L, Breitwieser FP, Salzberg SL (2016) Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res 26(12):1721–1729

    Article  CAS  PubMed  Google Scholar 

  26. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  Google Scholar 

  27. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12(10):902

    Article  CAS  Google Scholar 

  28. Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima JR, Coelho LP, Arumugam M, Tap J, Nielsen HB (2013) Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods 10(12):1196

    Article  CAS  Google Scholar 

  29. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17(1):132

    Article  PubMed  Google Scholar 

  30. Brown CT, Irber L (2016) sourmash: a library for MinHash sketching of DNA. J Open Source Softw 1(5):27

    Article  Google Scholar 

  31. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8(6):e1002358

    Article  CAS  PubMed  Google Scholar 

  32. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31(10):1674–1676

    Article  CAS  PubMed  Google Scholar 

  33. Boisvert S, Raymond F, Godzaridis É, Laviolette F, Corbeil J (2012) Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol 13(12):R122

    Article  PubMed  Google Scholar 

  34. Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40(20):e155–e155

    Article  CAS  PubMed  Google Scholar 

  35. Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, Ondov B, Darling AE, Phillippy AM, Pop M (2013) MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol 14(1):R2

    Article  PubMed  Google Scholar 

  36. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27(5):824–834. https://doi.org/10.1101/gr.213959.116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Breitwieser FP, Lu J, Salzberg SL (2017) A review of methods and databases for metagenomic classification and assembly. Brief Bioinform. https://doi.org/10.1093/bib/bbx120

  38. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I, Majda S, Fiedler J, Dahms E (2017) Critical assessment of metagenome interpretation—a benchmark of metagenomics software. Nat Methods 14(11):1063

    Article  CAS  PubMed  Google Scholar 

  39. Nielsen HB, Almeida M, Juncker AS et al (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32(8):822–828

    Article  CAS  PubMed  Google Scholar 

  40. Mikheenko A, Saveliev V, Gurevich A (2015) MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32(7):1088–1090

    Article  PubMed  Google Scholar 

  41. Sedlar K, Kupkova K, Provaznik I (2017) Bioinformatics strategies for taxonomy independent binning and visualization of sequences in shotgun metagenomics. Comput Struct Biotechnol J 15:48–55

    Article  CAS  PubMed  Google Scholar 

  42. Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW (2014) MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2(1):26

    Article  CAS  PubMed  Google Scholar 

  43. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Loman NJ, Andersson AF, Quince C (2013) CONCOCT: clustering contigs on coverage and composition. arXiv preprint arXiv:13124038

    Google Scholar 

  44. Kang DD, Froula J, Egan R, Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165

    Article  PubMed  Google Scholar 

  45. Wu Y-W, Ye Y (2011) A novel abundance-based algorithm for binning metagenomic sequences using l-tuples. J Comput Biol 18(3):523–534

    Article  CAS  PubMed  Google Scholar 

  46. Imelfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P, Tyson GW (2014) GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ 2:e603

    Article  PubMed  Google Scholar 

  47. Lu YY, Chen T, Fuhrman JA, Sun F (2017) COCACOLA: binning metagenomic contigs using sequence COmposition, read CoverAge, CO-alignment and paired-end read LinkAge. Bioinformatics 33(6):791–798

    CAS  PubMed  Google Scholar 

  48. Wang Y, Leung HC, Yiu S-M, Chin FY (2012) MetaCluster 5.0: a two-round binning approach for metagenomic data for low-abundance species in a noisy sample. Bioinformatics 28(18):i356–i362

    Article  CAS  PubMed  Google Scholar 

  49. Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF (2018) Recovery of genomes from metagenomes via a dereplication, aggregation, and scoring strategy. Nat Microbiol 3:836–843

    Article  CAS  PubMed  Google Scholar 

  50. Lin H-H, Liao Y-C (2016) Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep 6:24175

    Article  CAS  PubMed  Google Scholar 

  51. Bushnell B (2014) BBMap: a fast, accurate, splice-aware aligner. LBNL Department of Energy Joint Genome Institute, Walnut Creek, CA

    Google Scholar 

  52. Laczny CC, Sternal T, Plugaru V, Gawron P, Atashpendar A, Margossian HH, Coronado S, Van der Maaten L, Vlassis N, Wilmes P (2015) VizBin-an application for reference-independent visualization and human-augmented binning of metagenomic data. Microbiome 3(1):1

    Article  PubMed  Google Scholar 

  53. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055

    Article  CAS  PubMed  Google Scholar 

  54. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212

    Article  Google Scholar 

  55. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069

    Article  CAS  Google Scholar 

  56. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  Google Scholar 

  57. Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K, Kyrpides NC (2009) IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25(17):2271–2278

    Article  CAS  Google Scholar 

  58. Wilhelm RC, Singh R, Eltis LD, Mohn WW (2019) Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13(2):413–429. https://doi.org/10.1038/s41396-018-0279-6

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özge Eyice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kröber, E., Eyice, Ö. (2019). Profiling of Active Microorganisms by Stable Isotope Probing—Metagenomics. In: Dumont, M., Hernández García, M. (eds) Stable Isotope Probing. Methods in Molecular Biology, vol 2046. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9721-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9721-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9720-6

  • Online ISBN: 978-1-4939-9721-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics