Skip to main content

Computational Modeling for Biomimetic Sensors

  • Protocol
  • First Online:
Biomimetic Sensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2027))

Abstract

Computational modeling has become an important tool for scientists to both predict the properties of materials and systems and to gain a better understanding of the underlying mechanisms. This chapter is a brief yet holistic introduction to computational modeling, focusing on density functional theoretical (DFT) methods. The different types of computational modeling methods, including molecular mechanics, semiempirical, and ab initio methods, as well as the different software available for computational calculations are discussed. A step-by-step guide is presented using Gaussian16 software to introduce the basics of computational modeling based on our work with biomimetic polymer beads. However, the guide presented here is not limited to this particular system; it can be applied to any computational modeling case. The computational modeling methods for the building of the structures are described, and the calculation parameters, such as basis sets and exchange-correlation functionals, are explained. The output data and results are presented and discussed. Two simulation features were the focus of this work: (1) the simulation of the Raman spectra and (2) the different solvation environments. While some researchers in the field believe that computational simulation should be performed before the lab experiments, in fact they should be done simultaneously. This is so that the output of the experimental data can be used as the input of the computational parameters, as a form of semiempirical modeling, in order to achieve more accurate results for predicting the behavior of future experiments and understanding the atomic forces and mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohamadi F, Richards NGJ, Guida WC et al (1990) Macromodel-an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11:440–467. https://doi.org/10.1002/jcc.540110405

    Article  CAS  Google Scholar 

  2. Engler EM, Andose JD, Schleyer PVR (1973) Critical evaluation of molecular mechanics. J Am Chem Soc 95:8005–8025. https://doi.org/10.1021/ja00805a012

    Article  CAS  Google Scholar 

  3. Burkert U, Norman A (1982) Molecular mechanics. Am Chem Soc 177. https://doi.org/10.1002/jcc.540040420

    Article  Google Scholar 

  4. Ögretir C, Csizmadia IG (1991) Computational advances in organic chemistry: molecular structure and reactivity. Springer, Netherlands, Dordrecht

    Book  Google Scholar 

  5. Szabo A, Ostlund NS (1989) Modern quantum chemistry: introduction to advanced electronic structure theory. McGrw-Hill, New York, NY

    Google Scholar 

  6. Foresman JB, Frisch A (2015) Exploring chemistry with electronic structure methods, 3rd edn. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  7. Robert P, Yang W (1995) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  8. Segall MD, Lindan PJD, Probert MJ et al (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744. https://doi.org/10.1088/0953-8984/14/11/301

    Article  CAS  Google Scholar 

  9. Yu HS, Li SL, Truhlar DG (2016) Perspective: Kohn-Sham density functional theory descending a staircase. J Chem Phys 145:130901. https://doi.org/10.1063/1.4963168

    Article  CAS  PubMed  Google Scholar 

  10. From Wikipedia the Free Encyclopedia (2018) List of quantum chemistry and solid-state physics software. https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software

  11. Gameel KM, Sharafeldin IM, Abourayya AU et al (2018) Unveiling CO adsorption on Cu surfaces: new insights from molecular orbital principles. Phys Chem Chem Phys 20:25892–25900. https://doi.org/10.1039/C8CP04253E

    Article  CAS  PubMed  Google Scholar 

  12. Sharafeldin IM, Allam NK (2017) DFT insights into the electronic properties and adsorption of NO2 on metal-doped carbon nanotubes for gas sensing applications. New J Chem 41:14936–14944. https://doi.org/10.1039/C7NJ03109B

    Article  CAS  Google Scholar 

  13. Clark SJ, Segall MD, Pickard CJ et al (2005) First principles methods using CASTEP. Zeitschrift für Krist 220:567–570. https://doi.org/10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  14. Hafner J (2008) Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 29:2044–2078. https://doi.org/10.1002/jcc.21057

    Article  CAS  PubMed  Google Scholar 

  15. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  16. Crescenzi O, D’Ischia M, Napolitano A (2017) Kaxiras’s porphyrin: DFT modeling of redox-tuned optical and electronic properties in a theoretically designed catechol-based bioinspired platform. Biomimetics 2:21. https://doi.org/10.3390/biomimetics2040021

    Article  CAS  Google Scholar 

  17. Comba P, Rajaraman G, Rohwer H (2007) A density functional theory study of the reaction of the biomimetic Iron(II) complex of a tetradentate bispidine ligand with H2O2. Inorg Chem 46:3826–3838. https://doi.org/10.1021/ic061129y

    Article  CAS  PubMed  Google Scholar 

  18. Fitzgerald J, Sharafeldin I, Bravo-Vasquez JP, et al Microsensor based on cross-reactive, self-encoded polymer beads array

    Google Scholar 

  19. Jacob CR, Reiher M (2012) Spin in density-functional theory. Int J Quantum Chem 112:3661–3684. https://doi.org/10.1002/qua.24309

    Article  CAS  Google Scholar 

  20. Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689–746. https://doi.org/10.1103/RevModPhys.61.689

    Article  CAS  Google Scholar 

  21. Perdew JP, Wang Y (1992) Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys Rev B 46:12947–12954. https://doi.org/10.1103/PhysRevB.46.12947

    Article  CAS  Google Scholar 

  22. Grossman JC, Mitas L, Raghavachari K (1995) Structure and stability of molecular carbon: importance of electron correlation. Phys Rev Lett 75:3870–3873. https://doi.org/10.1103/PhysRevLett.75.3870

    Article  CAS  PubMed  Google Scholar 

  23. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980. https://doi.org/10.1021/jp960669l

    Article  CAS  Google Scholar 

  24. Finocchi F (2011) Density functional theory for beginners-basic principles and practical approaches. Institut des NanoSciences de Paris (INSP) CNRS and University Pierre et Marie Curie, Paris

    Google Scholar 

  25. Lewars EG (2016) Computational chemistry-introduction to the theory and applications of molecular and quantum mechanics. Springer, Switzerland

    Google Scholar 

  26. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nageh K. Allam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sharafeldin, I.M., Fitzgerald, J.E., Fenniri, H., Allam, N.K. (2019). Computational Modeling for Biomimetic Sensors. In: Fitzgerald, J., Fenniri, H. (eds) Biomimetic Sensing. Methods in Molecular Biology, vol 2027. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9616-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9616-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9615-5

  • Online ISBN: 978-1-4939-9616-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics