Skip to main content

Enrichment of Phosphorylated MHC Peptides with Immobilized Metal Affinity Chromatography and Titanium Dioxide Particles

  • Protocol
  • First Online:
Immunoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2024))

Abstract

Phosphorylation is one of the most important forms of posttranslational modification. Dysregulation of phosphorylation is implicated in tumorigenesis, with cancerous signaling pathways activated by kinases. For immunotherapy with neoantigen-based peptides, phosphopeptides derived from aberrantly phosphorylated proteins presented by major histocompatibility complex (MHC) are promising candidates due to their specificity to elicit cytotoxic T-cell responses. Unlike other MHC peptides, phosphorylated MHC peptides cannot be predicted from DNA sequences, and their identification relies on the direct detection of phosphopeptides using mass spectrometry (MS). For MS detection, it is extremely important to enrich phosphorylated peptides from the complex repertoire of MHC peptides. Herein, we describe the combined use of immobilized metal affinity chromatography and titanium dioxide nanoparticles for phosphopeptides enrichment from immunopeptidome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (2000) Signaling—2000 and beyond. Cell 100:113–127

    Article  CAS  Google Scholar 

  2. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Bio 8:530–541

    Article  CAS  Google Scholar 

  3. Brognard J, Hunter T (2011) Protein kinase signaling networks in cancer. Curr Opin Genet Dev 21:4–11

    Article  CAS  Google Scholar 

  4. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA et al (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189

    Article  CAS  Google Scholar 

  5. Francavilla C, Lupia M, Tsafou K, Villa A, Kowalczyk K, Jersie-Christensen RR et al (2017) Phosphoproteomics of primary cells reveals druggable kinase signatures in ovarian cancer. Cell Rep 18:3242–3256

    Article  CAS  Google Scholar 

  6. Mohammed F, Cobbold M, Zarling AL, Salim M, Barrett-Wilt GA, Shabanowitz J et al (2008) Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self. Nat Immunol 9:1236–1243

    Article  CAS  Google Scholar 

  7. Locard-Paulet M, Lim L, Veluscek G, McMahon K, Sinclair J, Van Weverwijk A et al (2016) Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration. Sci Signal 9:ra15-ra15

    Article  Google Scholar 

  8. Yi T, Zhai B, Yu Y, Kiyotsugu Y, Raschle T, Etzkorn M et al (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111:E2182–E2190

    Article  CAS  Google Scholar 

  9. K-L H, Li S, Mertins P, Cao S, Gunawardena HP, Ruggles KV et al (2017) Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat Commun 8:14864

    Article  Google Scholar 

  10. Dazert E, Colombi M, Boldanova T, Moes S, Adametz D, Quagliata L et al (2016) Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient. Proc Natl Acad Sci U S A 113:1381–1386

    Article  CAS  Google Scholar 

  11. Zarling AL, Polefrone JM, Evans AM, Mikesh LM, Shabanowitz J, Lewis ST et al (2016) Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Proc Natl Acad Sci U S A 103:14889–14894

    Article  Google Scholar 

  12. Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S et al (2016) Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun 7:13404

    Article  CAS  Google Scholar 

  13. Laumont CM, Daouda T, Laverdure J-P, Bonneil É, Caron-Lizotte O, Hardy M-P et al (2016) Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat Commun 7:10238

    Article  CAS  Google Scholar 

  14. Olsen JV, Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 12:3444–3452

    Article  CAS  Google Scholar 

  15. Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154:250–254

    Article  CAS  Google Scholar 

  16. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  CAS  Google Scholar 

  17. Zhou H, Low TY, Hennrich ML, van der Toorn H, Schwend T, Zou H et al (2011) Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment. Mol Cell Proteomics 10:M110.006452

    Article  Google Scholar 

  18. Potel CM, Lin M-H, Heck AJ, Lemeer S (2018) Defeating major contaminants in Fe3+-IMAC phosphopeptide enrichment. Mol Cell Proteomics 17:1028–1034

    Article  CAS  Google Scholar 

  19. Abelin JG, Trantham PD, Penny SA, Patterson AM, Ward ST, Hildebrand WH et al (2015) Complementary IMAC enrichment methods for HLA-associated phosphopeptide identification by mass spectrometry. Nat Protoc 10:1308–1318

    Article  CAS  Google Scholar 

  20. Chen R, Fauteux F, Foote S, Stupak J, Tremblay T-L, Gurnani K et al (2018) Chemical derivatization strategy for extending the identification of MHC class I immunopeptides. Anal Chem 90:11409–11416

    Article  CAS  Google Scholar 

  21. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, R., Li, J. (2019). Enrichment of Phosphorylated MHC Peptides with Immobilized Metal Affinity Chromatography and Titanium Dioxide Particles. In: Fulton, K., Twine, S. (eds) Immunoproteomics. Methods in Molecular Biology, vol 2024. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9597-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9597-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9596-7

  • Online ISBN: 978-1-4939-9597-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics