Skip to main content

Antimicrobial Resistance in Neisseria gonorrhoeae and Treatment of Gonorrhea

  • Protocol
  • First Online:
Book cover Neisseria gonorrhoeae

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1997))

Abstract

Gonorrhea and antimicrobial resistance (AMR) in Neisseria gonorrhoeae are major public health concerns globally. Dual antimicrobial therapy (mainly ceftriaxone 250–500 mg × 1 plus azithromycin 1–2 g × 1) is currently recommended in many countries. These dual therapies have high cure rates, have likely been involved in decreasing the level of cephalosporin resistance internationally, and inhibit the spread of AMR gonococcal strains. However, ceftriaxone-resistant strains are currently spreading internationally, predominately associated with travel to Asia. Furthermore, the first global treatment failure with recommended dual therapy was reported in 2016 and the first isolates with combined ceftriaxone resistance and high-level azithromycin resistance were reported in 2018 in the UK and Australia. New antimicrobials for treatment of gonorrhea are essential and, of the few antimicrobials in clinical development, zoliflodacin particularly appears promising. Holistic actions are imperative. These include an enhanced advocacy; prevention, early diagnosis, contact tracing, treatment, test-of-cure, and additional measures for effective management of anogenital and pharyngeal gonorrhea; antimicrobial stewardship; surveillance of infection, AMR and treatment failures; and intensified research, for example, regarding rapid molecular point-of-care detection of gonococci and AMR, novel AMR determinants, new antimicrobials, and an effective gonococcal vaccine, which is the only sustainable solution for management and control of gonorrhea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman L, Rowley J, Vander Hoorn S et al (2015) Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 10:e0143304

    Article  Google Scholar 

  2. Unemo M, Shafer WM (2014) Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 27:587–613

    Article  CAS  Google Scholar 

  3. Unemo M, Bradshaw CS, Hocking JS et al (2017) Sexually transmitted infections: challenges ahead. Lancet Infect Dis 17:e235–e279

    Article  Google Scholar 

  4. Unemo M, Jensen JS (2017) Antimicrobial-resistant sexually transmitted infections: gonorrhoea and Mycoplasma genitalium. Nat Rev Urol 14:139–152

    Article  Google Scholar 

  5. Unemo M (2015) Current and future antimicrobial treatment of gonorrhoea – the rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infect Dis 15:364

    Article  Google Scholar 

  6. Lewis DA (2014) Global resistance of Neisseria gonorrhoeae: when theory becomes reality. Curr Opin Infect Dis 27:62–67

    Article  CAS  Google Scholar 

  7. Bignell C, Unemo M (2013) 2012 European guideline on the diagnosis and treatment of gonorrhoea in adults. Int J STD AIDS 24:85–92

    Article  CAS  Google Scholar 

  8. Workowski KA, Bolan GA (2015) Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep 64(RR-03):1–137

    PubMed  PubMed Central  Google Scholar 

  9. Public Health Agency of Canada (2013) Canadian guidelines on sexually transmitted infections. Gonococcal infections. Public Health Agency of Canada, Ottawa, ON. www.phac-aspc.gc.ca/std-mts/sti-its/cgsti-ldcits/assets/pdf/section-5-6-eng.pdf. Accessed 9 Aug 2018

    Google Scholar 

  10. Australasian Sexual Health Alliance (ASHA) Australian STI management guidelines for use in primary care. www.sti.guidelines.org.au/sexually-transmissible-infections/gonorrhoea#management. Accessed 9 Aug 2018

  11. World Health Organization (WHO), Department of Reproductive Health and Research (2016) WHO guidelines for the treatment of Neisseria gonorrhoeae. WHO, Geneva, pp 1–64

    Google Scholar 

  12. Bignell C, Fitzgerald M (2011) UK national guideline for the management of gonorrhoea in adults, 2011. Int J STD AIDS 22:541–547

    Article  CAS  Google Scholar 

  13. AWMF-Register. Nr. 059/004 – S2k-Leitlinie: Gonorrhoe bei Erwachsenen und Adoleszenten aktueller Stand: 08/2013. 1–31 [In German]

    Google Scholar 

  14. Lewis DA (2010) The Gonococcus fights back: is this time a knock out? Sex Transm Infect 86:415–421

    Article  Google Scholar 

  15. Donà V, Low N, Golparian D et al (2017) Recent advances in the development and use of molecular tests to predict antimicrobial resistance in Neisseria gonorrhoeae. Expert Rev Mol Diagn 17:845–859

    Article  Google Scholar 

  16. Unemo M, Nicholas RA (2012) Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol 7:1401–1422

    Article  CAS  Google Scholar 

  17. Tapsall JW, Ndowa F, Lewis DA et al (2009) Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae. Expert Rev Anti-Infect Ther 7:821–834

    Article  Google Scholar 

  18. De Silva D, Peters J, Cole K et al (2016) Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study. Lancet Infect Dis 16:1295–1303

    Article  Google Scholar 

  19. Harris SR, Cole MJ, Spiteri G et al (2018) Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey. Lancet Infect Dis 18:758–768

    Article  Google Scholar 

  20. Jacobsson S, Golparian D, Cole M et al (2016) WGS analysis and molecular resistance mechanisms of azithromycin-resistant (MIC > 2 mg/L) Neisseria gonorrhoeae isolates in Europe from 2009 to 2014. J Antimicrob Chemother 71:3109–3116

    Article  CAS  Google Scholar 

  21. Peters J, Cresswell F, Amor L et al (2018) Whole genome sequencing of Neisseria gonorrhoeae reveals transmission clusters involving patients of mixed HIV serostatus. Sex Transm Infect 94:138–143

    Article  Google Scholar 

  22. Eyre DW, De Silva D, Cole K et al (2017) WGS to predict antibiotic MICs for Neisseria gonorrhoeae. J Antimicrob Chemother 72:1937–1947

    Article  CAS  Google Scholar 

  23. Demczuk W, Martin I, Peterson S et al (2016) Genomic epidemiology and molecular resistance mechanisms of azithromycin-resistant Neisseria gonorrhoeae in Canada from 1997 to 2014. J Clin Microbiol 54:1304–1313

    Article  CAS  Google Scholar 

  24. Demczuk W, Lynch T, Martin I et al (2015) Whole-genome phylogenomic heterogeneity of Neisseria gonorrhoeae isolates with decreased cephalosporin susceptibility collected in Canada between 1989 and 2013. J Clin Microbiol 53:191–200

    Article  Google Scholar 

  25. Grad YH, Kirkcaldy RD, Trees D et al (2014) Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study. Lancet Infect Dis 14:220–226

    Article  Google Scholar 

  26. Ryan L, Golparian D, Fennelly N et al (2018) Antimicrobial resistance and molecular epidemiology using whole-genome sequencing of Neisseria gonorrhoeae in Ireland, 2014–2016: focus on extended-spectrum cephalosporins and azithromycin. Eur J Clin Microbiol Infect Dis 37:1661-1672

    Google Scholar 

  27. Grad YH, Harris SR, Kirkcaldy RD et al (2016) Genomic epidemiology of gonococcal resistance to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in the United States, 2000–2013. J Infect Dis 214:1579–1587

    Article  CAS  Google Scholar 

  28. Fifer H, Cole M, Hughes G et al (2018) Sustained transmission of high-level azithromycin-resistant Neisseria gonorrhoeae in England: an observational study. Lancet Infect Dis 18:573–581

    Google Scholar 

  29. Wi T, Lahra MM, Ndowa F et al (2017) Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLoS Med 14:e1002344

    Article  Google Scholar 

  30. Spiteri G, Cole M, Unemo M et al (2013) The European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) – a sentinel approach in the European Union (EU)/European Economic Area (EEA). Sex Transm Infect 89(Suppl 4):iv16–iv18

    Article  Google Scholar 

  31. Cole MJ, Spiteri G, Jacobsson S et al (2015) Is the tide turning again for cephalosporin resistance in Neisseria gonorrhoeae in Europe? Results from the 2013 European surveillance. BMC Infect Dis 15:321

    Article  Google Scholar 

  32. Kirkcaldy RD, Kidd S, Weinstock HS et al (2013) Trends in antimicrobial resistance in Neisseria gonorrhoeae in the USA: The Gonococcal Isolate Surveillance Project (GISP), January 2006 – June 2012. Sex Transm Infect 89(Suppl 4):iv5–i10

    Article  Google Scholar 

  33. Kirkcaldy RD, Harvey A, Papp JR et al (2016) Neisseria gonorrhoeae antimicrobial susceptibility surveillance – The Gonococcal Isolate Surveillance Project, 27 sites, United States, 2014. MMWR Surveill Summ 65:1–19

    Article  Google Scholar 

  34. Martin I, Sawatzky P, Liu G et al (2016) Decline in decreased cephalosporin susceptibility and increase in azithromycin resistance in Neisseria gonorrhoeae, Canada. Emerg Infect Dis 22:65–67

    Article  CAS  Google Scholar 

  35. Lahra MM (2015) Australian Gonococcal Surveillance Programme. Australian Gonococcal Surveillance Programme annual report, 2014. Commun Dis Intell Q Rep 39:E347–E354

    PubMed  Google Scholar 

  36. Town K, Obi C, Quaye N et al (2017) Drifting towards ceftriaxone treatment failure in gonorrhoea: risk factor analysis of data from the Gonococcal Resistance to Antimicrobials Surveillance Programme in England and Wales. Sex Transm Infect 93:39–45

    Article  CAS  Google Scholar 

  37. Ohnishi M, Golparian D, Shimuta K et al (2011) Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 55:3538–3545

    Article  CAS  Google Scholar 

  38. Unemo M, Golparian D, Nicholas R et al (2012) High-level cefixime- and ceftriaxone-resistant N. gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 56:1273–1280

    Article  CAS  Google Scholar 

  39. Cámara J, Serra J, Ayats J et al (2012) Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J Antimicrob Chemother 67:1858–1860

    Article  Google Scholar 

  40. Vincent LR, Kerr SR, Tan Y et al (2018) In vivo-selected compensatory mutations restore the fitness cost of mosaic penA alleles that confer ceftriaxone resistance in Neisseria gonorrhoeae. MBio 9(2). https://doi.org/10.1128/mBio.01905-17

  41. Lahra MM, Ryder N, While DM (2014) A new multidrug-resistant strain of Neisseria gonorrhoeae in Australia. N Engl J Med 371:1850–1851

    Article  Google Scholar 

  42. Deguchi T, Yasuda M, Hatazaki K et al (2016) New clinical strain of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone in Japan. Emerg Infect Dis 22:142–144

    Article  CAS  Google Scholar 

  43. Gianecini R, Oviedo C, Stafforini G et al (2016) Neisseria gonorrhoeae resistant to ceftriaxone and cefixime, Argentina. Emerg Infect Dis 22:1139–1141

    Article  CAS  Google Scholar 

  44. Nakayama S, Shimuta K, Furubayashi K et al (2016) New ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain with a novel mosaic penA gene isolated in Japan. Antimicrob Agents Chemother 60:4339–4341

    Article  CAS  Google Scholar 

  45. Lefebvre B, Martin I, Demczuk W et al (2018) Ceftriaxone-resistant Neisseria gonorrhoeae, Canada, 2017. Emerg Infect Dis 24:381–383

    Article  CAS  Google Scholar 

  46. Terkelsen D, Tolstrup J, Johnsen CH et al (2017) Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017. Euro Surveill 22:1273

    Article  Google Scholar 

  47. Lahra MM, Martin I, Demczuk W et al (2018) Cooperative recognition of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain. Emerg Infect Dis 24:735–740

    Google Scholar 

  48. Poncin T, Fouere S, Braille A et al (2018) Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Euro Surveill 23(21). https://doi.org/10.2807/1560-7917.ES.2018.23.21.1800264

  49. Fifer H, Natarajan U, Jones L et al (2016) Failure of dual antimicrobial therapy in treatment of gonorrhoea. New Engl J Med 374:2504–2506

    Article  Google Scholar 

  50. Eyre DW, Sanderson ND, Lord E et al (2018) Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill 23(27). https://doi.org/10.2807/1560-7917.ES.2018.23.27.1800323

  51. Whiley DM, Jennison A, Pearson J et al (2018) Genetic characterization of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet Infect Dis 18:717–718

    Article  Google Scholar 

  52. Jönsson A, Jacobsson S, Foerster S et al (2018) Performance characteristics of newer MIC gradient strip tests compared with the Etest for antimicrobial susceptibility testing of Neisseria gonorrhoeae. APMIS 126:822–827

    Google Scholar 

  53. Unemo M, Ison C (2013) Gonorrhoea. In: Ballard R, Ison C, Lewis D, Ndowa F, Peeling R (eds) Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus. World Health Organization (WHO), Geneva

    Google Scholar 

  54. Low N, Unemo M (2016) Molecular tests for the detection of antimicrobial resistant Neisseria gonorrhoeae: when, where, and how to use? Curr Opin Infect Dis 29:45–51

    Article  CAS  Google Scholar 

  55. Goire N, Lahra MM, Chen M et al (2014) Molecular approaches to enhance surveillance of gonococcal antimicrobial resistance. Nat Rev Microbiol 12:223–229

    Article  CAS  Google Scholar 

  56. Sadiq ST, Mazzaferri F, Unemo M (2017) Rapid accurate point-of-care tests combining diagnostics and antimicrobial resistance prediction for Neisseria gonorrhoeae and Mycoplasma genitalium. Sex Transm Infect 93:S65–S68

    Article  Google Scholar 

  57. Demczuk W, Sidhu S, Unemo M et al (2017) Neisseria gonorrhoeae sequence typing for antimicrobial resistance, a novel antimicrobial resistance multilocus typing scheme for tracking global dissemination of N. gonorrhoeae strains. J Clin Microbiol 55:1454–1468

    Article  CAS  Google Scholar 

  58. Chisholm SA, Mouton JW, Lewis DA et al (2010) Cephalosporin MIC creep among gonococci: time for a pharmacodynamic rethink? J Antimicrob Chemother 65:2141–2148

    Article  CAS  Google Scholar 

  59. Rice LB (2015) Will use of combination cephalosporin/azithromycin therapy forestall resistance to cephalosporins in Neisseria gonorrhoeae? Sex Transm Infect 91:238–240

    Article  Google Scholar 

  60. Ison CA, Deal C, Unemo M (2013) Current and future treatment options for gonorrhoea. Sex Transm Infect 89(Suppl 4):iv52–iv56

    Google Scholar 

  61. Hauser C, Hirzberger L, Unemo M et al (2015) In vitro activity of fosfomycin alone and in combination with ceftriaxone or azithromycin against clinical Neisseria gonorrhoeae isolates. Antimicrob Agents Chemother 59:1605–1611

    Article  Google Scholar 

  62. Dowell D, Kirkcaldy RD (2013) Effectiveness of gentamicin for gonorrhoea treatment: systematic review and meta-analysis. Sex Transm Infect 89:142–147

    Article  CAS  Google Scholar 

  63. Hathorn E, Dhasmana D, Duley L et al (2014) The effectiveness of gentamicin in the treatment of Neisseria gonorrhoeae: a systematic review. Syst Rev 3:104

    Article  Google Scholar 

  64. Olsen B, Månsson F, Camara C et al (2012) Phenotypic and genetic characterisation of bacterial sexually transmitted infections in Bissau, Guinea-Bissau, West Africa: a prospective cohort study. BMJ Open 2:e000636

    Article  Google Scholar 

  65. Ross JD, Harding J, Duley L et al (2017) LB1.5 the efficacy and safety of gentamicin for the treatment of genital, pharyngeal and rectal gonorrhoea: a randomised controlled trial. Sex Transm Infect 93(Suppl 2):A42–A43

    Google Scholar 

  66. Rodríguez A, Gallego A, Olay T et al (1977) Bacteriological evaluation of fosfomycin in clinical studies. Chemotherapy 23(Suppl 1):247–258

    Article  Google Scholar 

  67. Bruhn DF, Waidyarachchi SL, Madhura DB et al (2015) Aminomethyl spectinomycins as therapeutics for drug-resistant respiratory tract and sexually transmitted bacterial infections. Sci Transl Med 7:288ra75

    Article  Google Scholar 

  68. Savage VJ, Charrier C, Salisbury AM et al (2016) Biological profiling of novel tricyclic inhibitors of bacterial DNA gyrase and topoisomerase IV. J Antimicrob Chemother 71:1905–1913

    Article  CAS  Google Scholar 

  69. Jönsson A, Foerster S, Golparian D et al (2018) In vitro activity and time-kill curve analysis of sitafloxacin against a global panel of antimicrobial-resistant and multidrug-resistant Neisseria gonorrhoeae isolates. APMIS 126:29–37

    Article  Google Scholar 

  70. Jacobsson S, Mason C, Khan N, Meo P, Unemo M (2019) In vitro activity of the novel oral antimicrobial SMT-571, with a new mechanism of action, against MDR and XDR Neisseria gonorrhoeae: future treatment option for gonorrhoea? J Antimicrob Chemother pii: dkz060. https://doi.org/10.1093/jac/dkz060. [Epub ahead of print] 

  71. Llano-Sotelo B, Dunkle J, Klepacki D et al (2012) Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob Agents Chemother 54:4961–4970

    Article  Google Scholar 

  72. Golparian D, Fernandes P, Ohnishi M et al (2012) In vitro activity of the new fluoroketolide solithromycin (CEM-101) against a large collection of clinical Neisseria gonorrhoeae isolates and international reference strains including those with various high-level antimicrobial resistance-potential treatment option for gonorrhea? Antimicrob Agents Chemother 56:2739–2742

    Article  CAS  Google Scholar 

  73. Hook EW III, Golden M, Jamieson BD et al (2015) A phase 2 trial of oral solithromycin 1200 mg or 1000 mg as single-dose oral therapy for uncomplicated gonorrhea. Clin Infect Dis 61:1043–1048

    Article  Google Scholar 

  74. Cempra (2017) Cempra provides corporate update and reports fourth quarter and full year 2016 financial results. http://investor.cempra.com/releasedetail.cfm?ReleaseID=1014807. Accessed 2 Mar 2017

  75. Biedenbach DJ, Bouchillon SK, Hackel M et al (2016) In vitro activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens. Antimicrob Agents Chemother 60:1918–1923

    Article  CAS  Google Scholar 

  76. Scangarella-Oman NE, Dixon P, Koeth LM et al (2016) Analysis of agar dilution MIC testing methods and variables and in vitro activity of gepotidacin (GSK2140944) against Neisseria gonorrhoeae. ASM Microbe. Boston, MA, Poster 462

    Google Scholar 

  77. Jacobsson S, Golparian D, Scangarella-Oman N et al (2018) In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. J Antimicrob Chemother 73:2072–2077

    Article  CAS  Google Scholar 

  78. Taylor SN, Morris DH, Avery AK et al (2018) Gepotidacin for the treatment of uncomplicated urogenital gonorrhea: A phase 2, randomized, dose-ranging, single-oral dose evaluation. Clin Infect Dis 67:504–512

    Google Scholar 

  79. Scangarella-Oman NE, Hossain M, Dixon PB et al (2018) Microbiological analysis from a phase 2 randomized study in adults evaluating single oral doses of gepotidacin in the treatment of uncomplicated urogenital gonorrhea caused by Neisseria gonorrhoeae. Antimicrob Agents Chemother 62(12)

    Google Scholar 

  80. Farrell DJ, Sader HS, Rhomberg PR et al (2017) In vitro activity of gepotidacin (GSK2140944) against Neisseria gonorrhoeae. Antimicrob Agents Chemother 61:pii:e02047-16

    Article  Google Scholar 

  81. Huband MD, Bradford PA, Otterson LG et al (2015) In vitro antibacterial activity of AZD0914: a new spiropyrimidinetrione DNA Gyrase/Topoisomerase inhibitor with potent activity against Gram-positive, fastidious Gram-negative, and atypical bacteria. Antimicrob Agents Chemother 59:467–474

    Article  Google Scholar 

  82. Foerster S, Golparian D, Jacobsson S et al (2015) Genetic resistance determinants, in vitro time-kill curve analysis and pharmacodynamic functions for the novel topoisomerase II inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae. Front Microbiol 6:1377

    Article  Google Scholar 

  83. Basarab GS, Kern GH, McNulty J et al (2015) Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial type II topoisomerases. Sci Rep 5:11827

    Article  CAS  Google Scholar 

  84. Alm RA, Lahiri SD, Kutschke A et al (2015) Characterization of the novel DNA gyrase inhibitor AZD0914: Low resistance potential and lack of cross-resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 59:1478–1486

    Article  CAS  Google Scholar 

  85. Jacobsson S, Golparian D, Alm RA et al (2014) High in vitro activity of the novel spiropyrimidinetrione AZD0914, a DNA gyrase inhibitor, against multidrug resistant Neisseria gonorrhoeae isolates suggests a new effective option for oral treatment of gonorrhea. Antimicrob Agents Chemother 58:5585–5588

    Article  Google Scholar 

  86. Unemo M, Ringlander J, Wiggins C et al (2015) High in vitro susceptibility to the novel spiropyrimidinetrione ETX0914 (also known as AZD0914) among 873 contemporary clinical Neisseria gonorrhoeae isolates in 21 European countries during 2012–2014. Antimicrob Agents Chemother 59:5220–5225

    Article  CAS  Google Scholar 

  87. Su XH, Wang BX, Le WJ et al (2015) Multidrug-resistant Neisseria gonorrhoeae isolates from Nanjing, China, are sensitive to killing by a novel DNA Gyrase inhibitor, ETX0914 (AZD0914). Antimicrob Agents Chemother 60:621–623

    Article  Google Scholar 

  88. Papp JR, Lawrence K, Sharpe S et al (2016) In vitro growth of multidrug-resistant Neisseria gonorrhoeae isolates is inhibited by ETX0914, a novel spiropyrimidinetrione. Int J Antimicrob Agents 48:328–330

    Article  CAS  Google Scholar 

  89. Taylor SN, Marrazzo J, Batteiger BE et al (2018) Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhea. N Engl J Med 379:1835–1845

    Google Scholar 

  90. World Health Organization (WHO) (2012) Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae. WHO, Geneva. http://www.who.int/reproductivehealth/publications/rtis/9789241503501/en/

    Google Scholar 

  91. Graham RM, Doyle CJ, Jennison AV (2017) Epidemiological typing of Neisseria gonorrhoeae and detection of markers associated with antimicrobial resistance directly from urine samples using next generation sequencing. Sex Transm Infect 93:65–67

    Article  CAS  Google Scholar 

  92. Gottlieb SL, Deal CD, Giersing B et al (2016) The global roadmap for advancing development of vaccines against sexually transmitted infections: update and next steps. Vaccine 34:2939–2947

    Article  Google Scholar 

  93. Jerse AE, Deal CD (2013) Vaccine research for gonococcal infections: where are we? Sex Transm Infect 89(Suppl 4):iv63–iv68

    Article  Google Scholar 

  94. Zielke RA, Wierzbicki IH, Baarda BI et al (2016) Proteomics-driven antigen discovery for development of vaccines against gonorrhea. Mol Cell Proteomics 15:2338–2355

    Article  CAS  Google Scholar 

  95. Rice PA, Shafer WM, Ram S et al (2017) Neisseria gonorrhoeae: drug resistance, mouse models, and vaccine development. Annu Rev Microbiol 71:665–686

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Unemo, M., Golparian, D., Eyre, D.W. (2019). Antimicrobial Resistance in Neisseria gonorrhoeae and Treatment of Gonorrhea. In: Christodoulides, M. (eds) Neisseria gonorrhoeae. Methods in Molecular Biology, vol 1997. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9496-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9496-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9495-3

  • Online ISBN: 978-1-4939-9496-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics