Skip to main content

Fungi (Mold)-Based Lipid Production

  • Protocol
  • First Online:
Microbial Lipid Production

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1995))

Abstract

There is an increasing need for the development of alternative energy sources with a focus on reducing greenhouse gas emissions and striving toward a sustainable economy. Bioethanol and biodiesel are currently the primary choices of alternative transportation fuels. At present, biodiesel is not competitive with conventional fuel due to its high price, and the only way to compete with conventional fuel is to improve the quality, reduce the costs, and coproduce value-added products. With the high demand for lipids in the energy sector and other industrial applications, microbial lipids accumulated from microorganisms, especially oleaginous fungi and yeasts have been the important topic of many recent research studies. This chapter summarizes the current status of knowledge and technology about lipid production by oleaginous fungi and yeasts for biofuel applications and other value-added products. The chapter focuses on several aspects such as the most promising oleaginous strains, strain development, improvement of lipid production, methods and protocols to cultivate oleaginous fungi, substrate utilization, fermentation process design, and downstream processing. The feasibility and challenges during the large-scale commercial production of microbial lipids as fuel sources are also discussed. It provides an overview of microbial lipid production biorefinery and also future development directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratledge C (1991) Microorganisms for lipids. Acta Biotechnol 11(5):429–438

    Article  CAS  Google Scholar 

  2. Biermann U, Friedt W, Lang S, Lühs W, Machmüller G, Metzger JO, Rüsch Gen Klaas M, Schäfer HJ, Schneider MP (2000) New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew Chem Int Ed Eng 39:2206–2224

    Article  CAS  Google Scholar 

  3. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  CAS  PubMed  Google Scholar 

  4. Sakuradani E (2010) Advances in the production of various polyunsaturated fatty acids through oleaginous fungus Mortierella alpina breeding. Biosci Biotechnol Biochem 74:908–917

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Hu B (2012) Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull. Appl Biochem Biotechnol 166:1034–1046

    Article  CAS  PubMed  Google Scholar 

  6. Meng X, Yang J, Xu X, Zhang L, Nie Q, Mian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5

    Article  CAS  Google Scholar 

  7. Patnayak S, Sree A (2005) Screening of bacterial associates of marine sponges for single cell oil and PUFA. Lett Appl Microbiol 40:358–363

    Article  CAS  PubMed  Google Scholar 

  8. Xia C, Zhang J, Zhang W, Hu B (2011) A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol Biofuels 4:15

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  CAS  PubMed  Google Scholar 

  10. Ratledge C (1993) Single cell oils—have they a biotechnological future? Trends Biotechnol 11:278–284

    Article  CAS  PubMed  Google Scholar 

  11. Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46:124–130

    Article  CAS  PubMed  Google Scholar 

  12. Hu C, Zhao X, Zhao J, Wu S, Zhao ZK (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100(20):4843–4847

    Article  CAS  PubMed  Google Scholar 

  13. Ruan Z, Zanotti M, Zhong Y, Liao W, Ducey C, Liu Y (2012) Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation. Biotechnol Bioeng 110:1039–1049

    Article  PubMed  CAS  Google Scholar 

  14. Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–317

    Article  CAS  Google Scholar 

  15. Lin H, Cheng W, Ding HT, Chen XJ, Zhou QF, Zhao YH (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol 101:7556–7562

    Article  CAS  PubMed  Google Scholar 

  16. Vicente G, Bautista LF, Gutierrez FJ, Rodriguez R, Martinez V, Rodriguez-Frometa RA, Rui-Vazquez RM, Torres-Martinez S, Garre V (2010) Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuel 24:3173–3178

    Article  CAS  Google Scholar 

  17. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  PubMed  Google Scholar 

  18. Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol 110:198–205

    Article  CAS  PubMed  Google Scholar 

  19. Zeng J, Zheng Y, Yu X, Yu L, Gao D, Chen S (2013) Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina. Bioresour Technol 128:385–391

    Article  CAS  PubMed  Google Scholar 

  20. Wei H, Wang W, Yarbrough JM, Baker JO, Laurens L, Wychen SV, Chen X, Taylot LE II, Xu Q, Himmel ME, Zhang M (2013) Genomic, proteomic, and biochemical analyses of oleaginous Mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production. PLoS One 8:E71068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen H, Liu T (1997) Inoculum effects on the production of γ-linolenic acid by the shake culture of Cunninghamella echinulata CCRC31840. Enzyme Microb Technol 21:137–142

    Article  CAS  Google Scholar 

  22. Fakas S, Papanikolaou S, Batsos A, Galiotou-Panoyotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580

    Article  CAS  Google Scholar 

  23. Gutiérrez A, López-García S, Garre V (2011) High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods 84:442–446

    Article  PubMed  CAS  Google Scholar 

  24. Rossi M, Amaretti A, Raimondi S, Leonardi A (2011) Getting lipids for biodiesel production from oleaginous fungi. In: Biodiesel: feedstocks and processing technologies. Intech. www.intechopen.com

    Google Scholar 

  25. Du Preez J, Immelman M, Kock JLF, Kilian SG (1995) Production of gamma-linolenic acid by Mucor circinelloides and Mucor rouxii with acetic acid as carbon substrate. Biotechnol Lett 17(9):933–938

    Article  Google Scholar 

  26. Mamatha S, Ravi R, Venkateswaran G (2008) Medium optimization of gamma linolenic acid production in Mucor rouxii CFR-G15 using RSM. Food Bioprocess Technol 1:405–409

    Article  Google Scholar 

  27. Somashekar D, Venkateshwaran G, Sambaiah K, Lokesh BR (2003) Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Process Biochem 38(12):1719–1724

    Article  CAS  Google Scholar 

  28. Eroshin V, Dediukhina EG, Satrutdinov AD, Chistiakova TI (2000) Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Process Biochem 35:1171–1175

    Article  CAS  Google Scholar 

  29. Aki T, Nagahata Y, Ishihara K, Tanaka Y, Morinaga T, Higashiyama K, Akimoto K, Fujikawa S, Kawamoto S, Shigeta S, Ono K, Suzuki O (2001) Production of arachidonic acid by filamentous fungus, Mortierella alliacea strain YN-15. J Am Oil Chem Soc 78:5999–5604

    Article  Google Scholar 

  30. Adachi D, Hama S, Numata T, Nakashima K, Ogino C, Fukuda H, Kondo A (2011) Development of an Aspergillus oryzae whole-cell biocatalyst coexpressing triglyceride and partial glyceride lipases for biodiesel production. Bioresour Technol 102(12):6723–6729

    Article  CAS  PubMed  Google Scholar 

  31. Beopoulos A, Chardot T, Nicaud J (2009) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91:692–696

    Article  CAS  PubMed  Google Scholar 

  32. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227

    Article  CAS  PubMed  Google Scholar 

  33. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    CAS  PubMed  Google Scholar 

  34. Holdsworth J, Ratledge C (1991) Triacylglycerol synthesis in the oleaginous yeast Candida curvata. Lipids 26:111–118

    Article  CAS  PubMed  Google Scholar 

  35. Meesters P, Huijberts G, Eggink G (1996) High cell density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45:575–579

    Article  CAS  Google Scholar 

  36. Zhang L, Tang Y, Guo ZP, Ding ZY, Shi GY (2011) Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae. Biotechnol Lett 33:1375–1380

    Article  CAS  PubMed  Google Scholar 

  37. Wang S, Sun JS, Han BZ, Wu XZ (2007) Optimization of β-carotene production by Rhodotorula glutinis using high hydrostatic pressure and response surface methodology. J Food Sci 72:M325–M329

    Article  CAS  PubMed  Google Scholar 

  38. Easterling ER, French WT, Harnandez R, Licha M (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol 100:356–361

    Article  CAS  PubMed  Google Scholar 

  39. Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102:6134–6140

    Article  CAS  PubMed  Google Scholar 

  40. Zhao X, Kong X, Hua Y, Feng B, Zhao Z (2008) Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Technol 110(5):405–412

    Article  CAS  Google Scholar 

  41. Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, Sousa Lda C, Balan V (2015) Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol 33(1):43–54

    Article  CAS  PubMed  Google Scholar 

  42. Dey P, Banerjee J, Maiti M (2011) Comparative lipid profiling of two endophytic fungal isolates – Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Bioresour Technol 102:5815–5823

    Article  CAS  PubMed  Google Scholar 

  43. Peng X, Chen H (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57:239–242

    Article  CAS  Google Scholar 

  44. Subhash VG, Venkata Mohan S (2011) Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol 102:9286–9290

    Article  CAS  Google Scholar 

  45. Kitcha S, Cheirsilp B (2014) Bioconversion of lignocellulosic palm byproducts into enzymes and lipid by newly isolated oleaginous fungi. Biochem Eng J 88:95–100

    Article  CAS  Google Scholar 

  46. Tanimura A, Takashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Sakuradani E, Ogawa J, Shima J (2014) Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresour Technol 153:230–235

    Article  CAS  PubMed  Google Scholar 

  47. Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051

    Article  CAS  Google Scholar 

  48. Weete J (1980) Sphingolipids. In: Lipid biochemistry of fungi and other organisms. Springer US, New York, pp 180–195

    Chapter  Google Scholar 

  49. Sitepu I, Sestric R, Ignatia L, Levin D, German JB, Gillies LA, Almada LA, Boundy-Mills KL (2013) Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresour Technol 144:360–369

    Article  CAS  PubMed  Google Scholar 

  50. Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101(15):6124–6129

    Article  CAS  PubMed  Google Scholar 

  51. Zhao X, Peng F, Du W, Liu C, Liu D (2012) Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng 35:993–1004

    Article  CAS  PubMed  Google Scholar 

  52. Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147:2857–2864

    Article  CAS  PubMed  Google Scholar 

  53. Jang H, Lin Y, Yang S (2005) Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Bioresour Technol 96:1633–1644

    Article  CAS  PubMed  Google Scholar 

  54. Granger L-M, Perlot P, Goma G, Pareilleux A (1992) Kinetics of growth and fatty acid production of Rhodotorula glutinis. Appl Microbiol Biotechnol 37(1):13–17

    Article  CAS  Google Scholar 

  55. Uemura H (2012) Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl Microbiol Biotechnol 95:1–12

    Article  CAS  PubMed  Google Scholar 

  56. Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud JM, Chardot T (2006) Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 6:1450–1459

    Article  CAS  PubMed  Google Scholar 

  57. Zavala-Moreno A, Arreguin-Espinosa R, Pardo JP, Romero-Aguilar L, Guerra-Sanchez G (2014) Nitrogen source affects glycolipid production and lipid accumulation in the phytopathogen fungus Ustilago maydis. Adv Microbiol 04:934–944

    Article  CAS  Google Scholar 

  58. Santamauro F, Whiffm FM, Scott RJ, Chuck CJ (2014) Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol Biofuels 110:198–205

    Google Scholar 

  59. Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056

    Article  CAS  PubMed  Google Scholar 

  60. Liang M, Jiang J (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408

    Article  CAS  PubMed  Google Scholar 

  61. Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y, Adams I, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 53:2013–2025

    Article  CAS  Google Scholar 

  63. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kalscheuer R, Luftmann H, Steinbuchel A (2004) Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 70:7119–7125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kalscheuer R (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  PubMed  Google Scholar 

  66. Vazquez-Duhalt R, Greppin H (1987) Growth and production of cell constituents in batch cultures of Botryococcus sudeticus. Phytochemistry 26:885–889

    Article  CAS  Google Scholar 

  67. Xu J, Zhao X, Wang W, Du W, Liu D (2012) Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochem Eng J 65:30–36

    Article  CAS  Google Scholar 

  68. Zhu L, Zong M, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885

    Article  CAS  PubMed  Google Scholar 

  69. Zhu M, Yu L-J, Li W, Zhou P-P, Li C-Y (2006) Optimization of arachidonic acid production by fed-batch culture of Mortierella alpina based on dynamic analysis. Enzyme Microb Technol 38:735–740

    Article  CAS  Google Scholar 

  70. Zhang J, Fang X, Zhu X-L, Yan L, Xu H-P, Zhao B-F, Chen L, Zhang X-D (2011) Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass Bioenergy 35(5):1906–1911

    Article  CAS  Google Scholar 

  71. Brown BD, Hsu KH, Hammond EG, Glatz B (1989) A relationship between growth and lipid accumulation in Candida curvata D. J Ferment Bioeng 68:344–352

    Article  CAS  Google Scholar 

  72. Béligon V, Poughon L, Christophe G, Lebert A, Larroche C, Fontanille C (2016) Validation of a predictive model for fed-batch and continuous lipids production processes from acetic acid using the oleaginous yeast Cryptococcus curvatus. Biochem Eng J 111:117–128

    Article  CAS  Google Scholar 

  73. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49

    Article  CAS  PubMed  Google Scholar 

  74. Abu O (2000) Changes in lipid, fatty acids and protein composition of sweet potato (Ipomoea batatas) after solid-state fungal fermentation. Bioresour Technol 72:189–192

    Article  CAS  Google Scholar 

  75. Peng X, Chen H (2008) Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran. Bioresour Technol 99:3885–3889

    Article  CAS  PubMed  Google Scholar 

  76. Economou CN, Makri A, Aggelis G, Pavlou S, Vayenas DV (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol 101:1385–1388

    Article  CAS  PubMed  Google Scholar 

  77. Liao W, Liu Y, Chen S (2007) Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production. Appl Biochem Biotechnol 137:689–701

    PubMed  Google Scholar 

  78. Liu W, Wang Y, Yu Z, Bao J (2012) Simultaneous saccharification and microbial lipid fermentation of corn stover by oleaginous yeast Trichosporon cutaneum. Bioresour Technol 118:13–18

    Article  CAS  PubMed  Google Scholar 

  79. Heredia L, Ratledge C (1988) Simultaneous utilization of glucose and xylose by Candida curvata D in continuous culture. Biotechnol Lett 10(1):25–30

    Article  CAS  Google Scholar 

  80. Daniel HJ, Otto RT, Binder M, Reuss M, Syldatk C (1999) Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as substrates. Appl Microbiol Biotechnol 51:40–45

    Article  CAS  PubMed  Google Scholar 

  81. Hansson L, Dostlek M (1986) Influence of cultivation conditions on lipid production by Cryptococcus albidus. Appl Microbiol Biotechnol 24:12–18

    CAS  Google Scholar 

  82. Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2007) Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur J Lipid Sci Technol 109:1060–1070

    Article  CAS  Google Scholar 

  83. Huang C, Zong M-H, Wu H, Liu Q-P (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100:4535–4538

    Article  CAS  PubMed  Google Scholar 

  84. Liang Y, Tang T, Siddaramu T, Choudhary R, Umagiliyage AL (2012) Lipid production from sweet sorghum bagasse through yeast fermentation. Renew Energy 40:130–136

    Article  CAS  Google Scholar 

  85. Wild R, Patil S, Popovic M, Zappi M, Dufreche S, Bajpai R (2010) Lipids from Lipomyces starkeyi. Food Technol Biotechnol 48:329–335

    CAS  Google Scholar 

  86. Wang Q, Guo F-J, Rong Y-J, Chi Z-M (2012) Lipid production from hydrolysate of cassava starch by Rhodosporidium toruloides 21167 for biodiesel making. Renew Energy 46:164–168

    Article  CAS  Google Scholar 

  87. Fakas S, Certik M, Papanikolaou S, Aggelis G, Komaitis M, Galiotou-Panayotou M (2008) Gama-linolenic acid production by Cunninghamella echinulata growing on complex organic nitrogen sources. Bioresour Technol 99:5986–5990

    Article  CAS  PubMed  Google Scholar 

  88. Ykema A, Verbree EC, Kater MM, Smit H (1988) Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in whey permeate. Appl Microbiol Biotechnol 29:211–218

    CAS  Google Scholar 

  89. Akhtar P, Gray J, Asghar A (1998) Synthesis of lipids by certain yeast strains grown on whey permeate. J Food Lipids 5:283–297

    Article  CAS  Google Scholar 

  90. Christophe G, Deo JL, Kumar V, Nouaille R, Fontanille P, Larroche C (2011) Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus. Appl Biochem Biotechnol 167:1270–1279

    Article  PubMed  CAS  Google Scholar 

  91. Athalye S, Garcia R, Wen Z (2009) Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J Agric Food Chem 57:2739–2744

    Article  CAS  PubMed  Google Scholar 

  92. Chang Y-H, Chang K-S, Lee C-F, Hsu C-L, Huang C-W, Jang H-D (2015) Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass Bioenergy 72:95–103

    Article  CAS  Google Scholar 

  93. Xue F, Gao B, Zhu Y, Zhang Z, Feng W, Tan T (2010) Pilot-scale production of microbial lipid using starch wastewater as raw material. Bioresour Technol 101:6092–6095

    Article  CAS  PubMed  Google Scholar 

  94. Tsigie YA, Wang CY, Truong CT, Ju YH (2011) Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102:9216–9222

    Article  CAS  PubMed  Google Scholar 

  95. Xiaowei P, Hongzhang C (2012) Hemicellulose sugar recovery from steam-exploded wheat straw for microbial oil production. Process Biochem 47:209–215

    Article  CAS  Google Scholar 

  96. Oliveira Mdos S, Feddern V, Kupski L, Cipolatti EP, Badiale-Furlong E, de Souza-Soares LA (2011) Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour Technol 102:8335–8338

    Article  PubMed  CAS  Google Scholar 

  97. Economou C, Aggelis G, Pavlou S, Vayenas DV (2011) Single cell oil production from rice hulls hydrolysate. Bioresour Technol 102:9737–9742

    Article  CAS  PubMed  Google Scholar 

  98. Hu C, Wu S, Wang Q, Jin G, Shen H, Zhao ZK (2011) Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol Biofuels 4:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Aggelis G, Komaitis M (1999) Enhancement of single cell oil production by Yarrowia lipolytica growing in the presence of Teucrium polium L. aqueous extract. Biotechnol Lett 21:747–749

    Article  CAS  Google Scholar 

  100. Tsigie YA, Wang C-Y, Kasim NS, Diem Q-D, Huynh L-H, Ho Q-P, Truong C-T, Ju Y-H (2012) Oil production from Yarrowia lipolytica Po1g using rice bran hydrolysate. J Biomed Biotechnol 2012:1–10

    Article  CAS  Google Scholar 

  101. Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol 101:2351–2358

    Article  CAS  PubMed  Google Scholar 

  102. Gong Z, Wang Q, Shen H, Hu C, Jin G, Zhao ZK (2012) Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresour Technol 117:20–24

    Article  CAS  PubMed  Google Scholar 

  103. Mitra D, Rasmussen ML, Chand P, Chintareddy VR, Yao L, Grewell D, Verkade JG, Wang T, van Leeuwen JH (2012) Value-added oil and animal feed production from corn-ethanol stillage using the oleaginous fungus Mucor circinelloides. Bioresour Technol 107:368–375

    Article  CAS  PubMed  Google Scholar 

  104. Slininger PJ, Dien BS, Kurtzman CP, Moser BR, Bakota EL, Thompson SR, O’Bryan PJ, Cotta MA, Balan V, Jin M, Sousa Lda C, Dale BE (2016) Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnol Bioeng 113:1676–1690

    Article  CAS  PubMed  Google Scholar 

  105. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  106. Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–38

    Article  PubMed  Google Scholar 

  107. Huang C, Chen X-F, Xiong L, Chen X-D, Ma L-L, Chen Y (2013) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31:129–139

    Article  CAS  PubMed  Google Scholar 

  108. Lorenz E, Runge D, Marbà-Ardébol AM, Schmacht M, Stahl U, Senz M (2017) Systematic development of a two-stage fed-batch process for lipid accumulation in Rhodotorula glutinis. J Biotechnol 246:4–15

    Article  CAS  PubMed  Google Scholar 

  109. Lin J, Shen H, Tan H, Zhao X, Wu S, Hu C, Zhao ZK (2011) Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients. J Biotechnol 152:184–188

    Article  CAS  PubMed  Google Scholar 

  110. Lynd L (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465

    Article  Google Scholar 

  111. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    CAS  PubMed  Google Scholar 

  112. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) Look back at the U.S. department of energy’s aquatic species program: biodiesel from algae; close-out report. Office of Scientific and Technical Information (OSTI). Prepared for: U.S. Department of Energy’s Office of Fuels Development, pp 1–328

    Google Scholar 

  113. Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14:421–426

    Article  CAS  Google Scholar 

  114. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  PubMed  Google Scholar 

  115. Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Cheng F (2010) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110

    Article  PubMed  CAS  Google Scholar 

  116. Apt K, Behrens P (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  117. Wen Z, Chen F (2001) Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzyme Microb Technol 29:341–347

    Article  CAS  Google Scholar 

  118. Sansawa H, Endo H (2004) Production of intracellular phytochemicals in chlorella under heterotrophic conditions. J Biosci Bioeng 98:437–444

    Article  CAS  PubMed  Google Scholar 

  119. Barclay W, Meager K, Abril J (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129

    Article  CAS  Google Scholar 

  120. Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37:1271–1287

    Article  CAS  PubMed  Google Scholar 

  121. Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35:2245–2253

    Article  CAS  Google Scholar 

  122. Ren LJ, Ji XJ, Huang H, Qu L, Feng Y, Tong QQ, Ouyang PK (2010) Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl Microbiol Biotechnol 87:1649–1656

    Article  CAS  PubMed  Google Scholar 

  123. Yang HL, Lu CK, Chen SF, Chen YM, Chen YM (2010) Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol 12:173–185

    Article  CAS  Google Scholar 

  124. De Swaaf M, Sijtsma L, Pronk J (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672

    Article  PubMed  CAS  Google Scholar 

  125. Wu Z, Shi X (2007) Optimization for high-density cultivation of heterotrophic chlorella based on a hybrid neural network model. Lett Appl Microbiol 44:13–18

    Article  CAS  PubMed  Google Scholar 

  126. Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol 51:422–430

    Article  CAS  PubMed  Google Scholar 

  127. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  CAS  PubMed  Google Scholar 

  128. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  129. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  130. Hughes E, Benemann J (1997) Biological fossil CO2 mitigation. Energy Convers Manag 38:S467–S473

    Article  CAS  Google Scholar 

  131. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  PubMed  Google Scholar 

  132. Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    Article  CAS  PubMed  Google Scholar 

  133. Espinosa-Gonzalez I, Parashar A, Bressler D (2014) Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol 155:170–176

    Article  CAS  PubMed  Google Scholar 

  134. Yan D, Lu Y, Chen YF, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102:6487–6493

    Article  CAS  PubMed  Google Scholar 

  135. Kim D, Hur S (2013) Growth and fatty acid composition of three heterotrophic chlorella species. Algae 28:101–109

    Article  CAS  Google Scholar 

  136. Wan MX, Wang RM, Xia JL, Rosenberg JN, Nie ZY, Kobayashi N, Oyler GA, Betenbaugh MJ (2012) Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol Bioeng 109:1958–1964

    Article  CAS  PubMed  Google Scholar 

  137. Li P, Miao X, Li R, Zhong J (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol 2011:1–8

    Google Scholar 

  138. De Swaaf M, Pronk J, Sijtsma L (2003) Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61:40–43

    Article  PubMed  CAS  Google Scholar 

  139. Song X, Zang X, Zhang X (2015) Production of high docosahexaenoic acid by Schizochytrium sp. using low-cost raw materials from food industry. J Oleo Sci 64:197–204

    Article  CAS  PubMed  Google Scholar 

  140. Ren H-Y, Liu B-F, Ma C, Zhao L, Ren N-Q (2013) A new lipid-rich microalga Scenedesmus sp. strain r-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol Biofuels 6:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wen Z, Chen F (2002) Continuous cultivation of the diatom Nitzschia laevis for eicosapentaenoic acid production: physiological study and process optimization. Biotechnol Prog 18:21–28

    Article  CAS  PubMed  Google Scholar 

  142. Yu X, Zhao P, He C, Li J, Tang X, Zhou J, Huang Z (2012) Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Bioresour Technol 121:256–262

    Article  CAS  PubMed  Google Scholar 

  143. Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, Park MS, Yang J-W (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv 31:862–876

    Article  CAS  PubMed  Google Scholar 

  144. Folch J, Lees M, Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  145. Uquiche E, Jerez M, Ortiz J (2008) Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol). Innov Food Sci Emerg Technol 9:495–500

    Article  CAS  Google Scholar 

  146. Singh J, Bargale P (2000) Development of a small capacity double stage compression screw press for oil expression. J Food Eng 43:75–82

    Article  Google Scholar 

  147. Topare N, Raut SJ, Genge CV, Khedkar SV, Chavan YPO, Bhagat SL (2011) Extraction of oil from algae by solvent extraction and oil expeller method. Int J Chem Sci 9(4):1746–1750

    CAS  Google Scholar 

  148. Pradhan RC, Mishra S, Naik SN, Bhatnagar N, Vijay VK (2011) Oil expression from Jatropha seeds using a screw press expeller. Biosyst Eng 109:158–166

    Article  Google Scholar 

  149. King J (2002) Supercritical fluid extraction: present status and prospects. Grasas Aceites 53:8–21

    Article  CAS  Google Scholar 

  150. Salgin U, Doker O, Calimli A (2006) Extraction of sunflower oil with supercritical CO2: experiments and modeling. J Supercrit Fluids 38:326–331

    Article  CAS  Google Scholar 

  151. Del Valle J, Germain JC, Uquiche E, Zetzl C, Brunner G (2006) Microstructural effects on internal mass transfer of lipids in prepressed and flaked vegetable substrates. J Supercrit Fluids 37:178–190

    Article  CAS  Google Scholar 

  152. Krohn B, McNeff CV, Yan B, Nowlan D (2011) Production of algae-based biodiesel using the continuous catalytic Mcgyan® process. Bioresour Technol 102:94–100

    Article  CAS  PubMed  Google Scholar 

  153. Umdu E, Tuncer M, Seker E (2009) Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour Technol 100:2828–2831

    Article  CAS  PubMed  Google Scholar 

  154. Vijayaraghavan K, Hemanathan K (2009) Biodiesel production from freshwater algae. Energy Fuel 23:5448–5453

    Article  CAS  Google Scholar 

  155. Tran D, Yeh K-L, Chen C-L, Chang J-S (2012) Enzymatic transesterification of microalgal oil from Chlorella vulgaris Esp-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour Technol 108:119–127

    Article  CAS  PubMed  Google Scholar 

  156. Patil P, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102:118–122

    Article  CAS  PubMed  Google Scholar 

  157. Rathana Y, Roces SA, Bacani FT, Tan RR, Kubouchi M, Yimsiri P (2010) Microwave-enhanced alkali catalyzed transesterification of kenaf seed oil. Int J Chem React Eng 8. https://doi.org/10.2202/1542-6580.2324

  158. Refaat A (2009) Different techniques for the production of biodiesel from waste vegetable oil. Int J Environ Sci Technol 7:183–213

    Article  Google Scholar 

  159. Patil P, Gude VG, Mannarswamy A, Cooke P, Munson-McGee S, Nirmalakhandan N, Lammers P, Deng S (2011) Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresour Technol 102:1399–1405

    Article  CAS  PubMed  Google Scholar 

  160. Geuens J, Kremsner JM, Nebel BA, Schober S, Dommisse RA, Mittelbach M, Tavernier S, Kappe CO, Maes BUW (2007) Microwave-assisted catalyst-free transesterification of triglycerides with 1-butanol under supercritical conditions. Energy Fuel 22:643–645

    Article  CAS  Google Scholar 

  161. Ji J, Wang J, Li Y, Yu Y, Xu Z (2006) Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics 44:E411–E414

    Article  PubMed  Google Scholar 

  162. Amaro H, Guedes A, Malcata F (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410

    Article  CAS  Google Scholar 

  163. Wahlen B, Willis R, Seefeldt L (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102:2724–2730

    Article  CAS  PubMed  Google Scholar 

  164. Cao H, Zhang Z, Wu X, Miao X (2013) Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. Biomed Res Int 2013:1–6

    Google Scholar 

  165. Johnson M, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183

    Article  CAS  Google Scholar 

  166. Ehimen E, Sun Z, Carrington C (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89:677–684

    Article  CAS  Google Scholar 

  167. Özgül-Yücel S, Türkay S (2002) Variables affecting the yields of methyl esters derived from in situ esterification of rice bran oil. J Am Oil Chem Soc 79:611–614

    Article  Google Scholar 

  168. Ehimen E, Sun Z, Carrington G (2012) Use of ultrasound and co-solvents to improve the in-situ transesterification of microalgae biomass. Procedia Environ Sci 15:47–55

    Article  CAS  Google Scholar 

  169. Cheng J, Yu T, Li T, Zhou J, Cen K (2013) Using wet microalgae for direct biodiesel production via microwave irradiation. Bioresour Technol 131:531–535

    Article  CAS  PubMed  Google Scholar 

  170. Goyal H, Seal D, Saxena R (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energy Rev 12:504–517

    Article  CAS  Google Scholar 

  171. Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378

    Article  Google Scholar 

  172. Mckendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    Article  CAS  PubMed  Google Scholar 

  173. Hirano A, Hon-Nami K, Hunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404

    Article  CAS  Google Scholar 

  174. Mackay S, Gomes E, Holliger C, Bauer R, Schwitzguébel JP (2015) Harvesting of Chlorella sorokiniana by co-culture with the filamentous fungus Isaria fumosorosea: a potential sustainable feedstock for hydrothermal gasification. Bioresour Technol 185:353–361

    Article  CAS  PubMed  Google Scholar 

  175. López Barreiro D, Prins W, Ronsse F, Brilman W (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53:113–127

    Article  CAS  Google Scholar 

  176. Dote Y, Sawayama S, Innoue S, Minowa T, Yokoyama S-Y (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857

    Article  CAS  Google Scholar 

  177. Demirbaş A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41:633–646

    Article  Google Scholar 

  178. Jena U, Das K (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuel 25:5472–5482

    Article  CAS  Google Scholar 

  179. Maher K, Bressler D (2007) Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour Technol 98:2351–2368

    Article  CAS  PubMed  Google Scholar 

  180. Demirbaş A (2006) Oily products from mosses and algae via pyrolysis. Energy Sources Part A 28:933–940

    Article  CAS  Google Scholar 

  181. Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99:7941–7953

    Article  CAS  PubMed  Google Scholar 

  182. Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12(3–5):395–400

    Article  Google Scholar 

  183. Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ghirardi M (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511

    Article  CAS  PubMed  Google Scholar 

  185. Feofilova E, Sergeeva Y, Ivashechkin A (2010) Biodiesel-fuel: content, production, producers, contemporary biotechnology (review). Appl Biochem Microbiol 46:369–378

    Article  CAS  Google Scholar 

  186. Dahiya A (2015) Algae biomass cultivation for advanced biofuel production. In: Bioenergy. Elsevier, Amsterdam, pp 219–238

    Chapter  Google Scholar 

  187. Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32:1336–1360

    Article  CAS  PubMed  Google Scholar 

  188. Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  PubMed  Google Scholar 

  189. Metzger P, Largeau C (2004) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  PubMed  CAS  Google Scholar 

  190. Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328

    Article  CAS  PubMed  Google Scholar 

  191. Chen G, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28:607–616

    Article  CAS  PubMed  Google Scholar 

  192. Williams P, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review and analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554

    Article  CAS  Google Scholar 

  193. Simopoulos A (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70:560S–569S

    Article  CAS  PubMed  Google Scholar 

  194. Simopoulos A (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505

    Article  CAS  PubMed  Google Scholar 

  195. Behrens P (2005) Photobioreactors and fermentors, in algal culturing techniques. The light and dark sides of growing algae. In: Anderson RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, pp 189–203

    Google Scholar 

  196. Mendes A, Reis A, Vasconcelos R, Guerra P (2008) Crypthecodinium cohnii with emphasis on DHA production: a review. J Appl Phycol 21:199–214

    Article  Google Scholar 

  197. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  PubMed  Google Scholar 

  198. Cohen G (2011) Microbial biochemistry. Springer, Netherlands

    Book  Google Scholar 

  199. Guerin M, Huntley M, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  PubMed  Google Scholar 

  200. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  201. Könst P, Franssen MCR, Scott EL, Sanders JPM (2011) Stabilization and immobilization of Trypanosoma brucei ornithine decarboxylase for the biobased production of 1,4-diaminobutane. Green Chem 13:1167

    Article  CAS  Google Scholar 

  202. Marris E (2006) Black is the new green. Nature 442:624–626

    Article  CAS  PubMed  Google Scholar 

  203. Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems – a review. Mitig Adapt Strat Gl 11(2):403–427

    Article  Google Scholar 

  204. Lal R (2008) Black and buried carbons’ impacts on soil quality and ecosystem services. Soil Tillage Res 99:1–3

    Article  Google Scholar 

  205. Tan H, Aziz A, Aroua M (2013) Glycerol production and its applications as a raw material: a review. Renew Sust Energy Rev 27:118–127

    Article  CAS  Google Scholar 

  206. Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    Article  CAS  Google Scholar 

  207. Ueno Y, Kurano N, Miyachi S (1998) Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J Ferment Bioeng 86:38–43

    Article  CAS  Google Scholar 

  208. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  CAS  PubMed  Google Scholar 

  209. Asachi R, Karimi K, Taherzadeh M (2011) Ethanol production by mucor indicus using the fungal autolysate as a nutrient supplement. In: Proceedings of the world renewable energy congress. Sweden Linköping University Electronic Press, Linköping, Sweden

    Google Scholar 

  210. Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88

    Article  CAS  PubMed  Google Scholar 

  211. Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S (2014) Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy 68:135–150

    Article  CAS  Google Scholar 

  212. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, Y., Heidari, F., Hu, B. (2019). Fungi (Mold)-Based Lipid Production. In: Balan, V. (eds) Microbial Lipid Production. Methods in Molecular Biology, vol 1995. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9484-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9484-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9483-0

  • Online ISBN: 978-1-4939-9484-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics