Skip to main content

Synthesis of Site-Specific Crown Ether Adducts to DNA Abasic Sites: 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine and 2′-Deoxycytidine

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1973))

Abstract

Formation of adducts to DNA is of great benefit to DNA sequencing and damage detection technology and to enzymology. Here we describe the synthesis and characterization procedures of 18-crown-6 adducts formed to abasic (AP) sites, 8-oxo-7,8-dihydro-2′-deoxyguanosine (OG), and 2′-deoxycytidine (C) residues in DNA oligodeoxynucleotides. These crown ether adducts were used as site-specific modifications to facilitate nanopore technology. The methods described can be readily expanded to attach other suitable primary amines of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ono T, Wang S, Koo C, Engstrom L, David SS, Kool ET (2012) Direct fluorescence monitoring of DNA base excision repair. Angew Chem Int Ed 51:1689–1692

    Article  CAS  Google Scholar 

  2. McKibbin PL, Kobori A, Taniguchi Y, Kool ET, David SS (2012) Surprising repair activities of nonpolar analogs of 8-oxoG expose features of recognition and catalysis by base excision repair glycosylases. J Am Chem Soc 134:1653–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Erlanson DA, Chen L, Verdine GL (1993) DNA methylation through a locally unpaired intermediate. J Am Chem Soc 115:12583–12584

    Article  CAS  Google Scholar 

  4. Xu YZ, Zheng Q, Swann PF (1992) Synthesis of DNA containing modified bases by post-synthetic substitution. Synthesis of oligomers containing 4-substituted thymine: O4-alkylthymine, 5-methylcytosine, N4-dimethylamino-5-methylcytosine, and 4-thiothymine. J Org Chem 57:3839–3845

    Article  CAS  Google Scholar 

  5. McKibbin PL, Fleming AM, Towheed MA, Van Houten B, Burrows CJ, David SS (2013) Repair of hydantoin lesions and their amine adducts in DNA by base and nucleotide excision repair. J Am Chem Soc 135:13851–13861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gates KS (2009) An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol 22:1747–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pirogov N, Shafirovich V, Kolbanovskiy A, Solntsev K, Courtney SA, Amin S, Geacintov NE (1998) Role of hydrophobic effects in the reaction of a polynuclear aromatic diol epoxide with oligodeoxynucleotides in aqueous solutions. Chem Res Toxicol 11:381–388

    Article  CAS  PubMed  Google Scholar 

  8. Omumi A, Beach DG, Baker M, Gabryelski W, Manderville RA (2011) Postsynthetic guanine arylation of DNA by Suzuki-Miyaura cross-coupling. J Am Chem Soc 133:42–50

    Article  CAS  PubMed  Google Scholar 

  9. Korlach J, Turner SW (2012) Going beyond five bases in DNA sequencing. Curr Opin Struct Biol 22:251–261

    Article  CAS  PubMed  Google Scholar 

  10. Kumar S, Tao C, Chien M, Hellner B, Balijepalli A, Robertson JWF, Li Z, Russo JJ, Reiner JE, Kasianowicz JJ et al (2012) PEG-labeled nucleotides and nanopore detection for single molecule DNA sequencing by synthesis. Sci Rep 2:684

    Article  PubMed  PubMed Central  Google Scholar 

  11. An N, Fleming AM, White HS, Burrows CJ (2015) Nanopore detection of 8-oxoguanine in the human telomere repeat sequence. ACS Nano 9:4296–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Riedl J, Ding Y, Fleming AM, Burrows CJ (2015) Identification of DNA lesions using a third base pair for amplification and nanopore sequencing. Nat Commun 6:8807

    Article  CAS  PubMed  Google Scholar 

  13. Lee HJ, Wark AW, Corn RM (2006) Creating advanced multifunctional biosensors with surface enzymatic transformations. Langmuir 22:5241–5250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cederquist KB, Keating CD (2009) Curvature effects in DNA: au nanoparticle conjugates. ACS Nano 3:256–260

    Article  CAS  PubMed  Google Scholar 

  15. Allerson CR, Chen SL, Verdine GL (1997) A chemical method for site-specific modification of RNA: the convertible nucleoside approach. J Am Chem Soc 119:7423–7433

    Article  CAS  Google Scholar 

  16. An N, White HS, Burrows CJ (2012) Modulation of the current signatures of DNA abasic site adducts in the a-hemolysin ion channel. Chem Commun 48:11410–11412

    Article  CAS  Google Scholar 

  17. Mitchell N, Howorka S (2008) Chemical tags facilitate the sensing of individual DNA strands with nanopores. Angew Chem Int Ed Engl 47:5565–5568

    Article  CAS  PubMed  Google Scholar 

  18. Zeng T, Liu L, Li T, Li Y, Gao J, Zhao Y, Wu H-C (2015) Detection of 5-methylcytosine and 5-hydroxymethylcytosine in DNA via host-guest interactions inside alpha-hemolysin nanopores. Chem Sci 6:5628–5634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Purnell R, Mehta K, Schmidt J (2008) Nucleotide identification and orientation discrimination of DNA homopolymers immobilized in a protein nanopore. Nano Lett 8:3029–3034

    Article  CAS  PubMed  Google Scholar 

  20. Stoddart D, Heron A, Mikhailova E, Maglia G, Bayley H (2009) Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc Natl Acad Sci U S A 106:7702–7707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Henrickson SE, Misakian M, Robertson B, Kasianowicz JJ (2000) Driven DNA transport into an asymmetric nanometer-scale pore. Phys Res Lett 85:3057–3060

    Article  CAS  Google Scholar 

  22. An N, Fleming AM, White HS, Burrows CJ (2012) Crown ether-electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proc Natl Acad Sci U S A 109:11504–11509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schibel AEP, An N, Jin Q, Fleming AM, Burrows CJ, White HS (2010) Nanopore detection of 8-oxo-7,8-dihydro-2′-deoxyguanosine in immobilized single-stranded DNA via adduct formation to the DNA damage site. J Am Chem Soc 132:17992–17995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. An N, White HS, Burrows CJ (2012) Modulation of the current signatures of DNA abasic site adducts in the alpha-hemolysin ion channel. Chem Commun 48:11410–11412

    Article  CAS  Google Scholar 

  25. Hosford ME, Muller JG, Burrows CJ (2004) Spermine participates in oxidative damage of guanosine and 8-oxoguanosine leading to deoxyribosylurea formation. J Am Chem Soc 126:9540–9541

    Article  CAS  PubMed  Google Scholar 

  26. Luo W, Muller JG, Rachlin EM, Burrows CJ (2000) Characterization of spiroiminodihydantoin as a product of one-electron oxidation of 8-oxo-7,8-dihydroguanosine. Org Lett 2:613–616

    Article  CAS  PubMed  Google Scholar 

  27. Goldman D, Kalman TI (1983) Formation of 5- and 6-aminocytosine nucleosides and nucleotides form the corresponding 5-bromocytosine derivatives: synthesis and reaction mechanism. Nucleosides Nucleotides 2:175–187

    Article  CAS  Google Scholar 

  28. Ross SA, Burrows CJ (1997) Bromination of pyrimidines using bromide and monoperoxysulfate: a competition study between cytidine, uridine, and thymidine. Tetrahedron Lett 38:2805–2808

    Article  CAS  Google Scholar 

  29. Ross SA, Burrows CJ (1996) Cytosine-specific chemical probing of DNA using bromide and monoperoxysulfate. Nucleic Acids Res 24:5062–5063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Upadhya K, Khattak IK, Mullah B (2005) Oxidation of biotin during oligonucleotide synthesis. Nucleosides Nucleotides Nucleic Acids 24:919–922

    Article  CAS  PubMed  Google Scholar 

  31. Xue L, Greenberg MM (2007) Facile quantification of lesions derived from 2′-deoxyguanosine in DNA. J Am Chem Soc 129:7010–7011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang B, Guo L, Greenberg MM (2012) Quantification of 8-oxodGuo lesions in double-stranded DNA using a photoelectrochemical DNA sensor. Anal Chem 84:6048–6053

    Article  CAS  PubMed  Google Scholar 

  33. Fleming AM, Armentrout EI, Zhu J, Muller JG, Burrows CJ (2015) Spirodi(iminohydantoin) products from oxidation of 2′-deoxyguanosine in the presence of NH4Cl in nucleoside and oligodeoxynucleotide contexts. J Org Chem 80:711–721

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Institutes of Health, HG005095 and GM093099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia J. Burrows .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

An, N., Fleming, A.M., Rosecrans, N.C., Liao, Y., Burrows, C.J. (2019). Synthesis of Site-Specific Crown Ether Adducts to DNA Abasic Sites: 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine and 2′-Deoxycytidine. In: Shank, N. (eds) Non-Natural Nucleic Acids. Methods in Molecular Biology, vol 1973. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9216-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9216-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9215-7

  • Online ISBN: 978-1-4939-9216-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics