Skip to main content

LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9

  • Protocol
  • First Online:
Leishmania

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1971))

Abstract

Postgenomic analyses of Leishmania biology benefit from rapid and precise methods for gene manipulation. Traditional methods of gene knockout or tagging by homologous recombination have limitations: they tend to be slow and require successive transfection and selection rounds to knock out multiple alleles of a gene. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems overcome these limitations. We describe here in detail a simple, rapid, and scalable method for CRISPR-Cas9-mediated gene knockout and tagging in Leishmania. This method details how to use simple PCR to generate (1) templates for single guide RNA (sgRNA) transcription in cells expressing Cas9 and T7 RNA polymerase and (2) drug-selectable editing cassettes, using a modular set of plasmids as templates. pT plasmids allow for amplification of drug resistance genes for knockouts and pPLOT plasmids provide a choice of different tags to generate N- or C-terminally tagged proteins. We describe how to use an online platform (LeishGEdit.net) for automated primer design and how to perform PCRs and transfections in small batches or on 96-well plates for large-scale knockout or tagging screens. This method allows generation of knockout mutants or tagged cell lines within 1 week.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cruz A, Beverley SM (1990) Gene replacement in parasitic protozoa. Nature 348(6297):171–173. https://doi.org/10.1038/348171a0

    Article  CAS  PubMed  Google Scholar 

  2. Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K (2015) A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol 5(1):140197. https://doi.org/10.1098/rsob.140197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jones NG, Catta-Preta CMC, Lima A, Mottram JC (2018) Genetically validated drug targets in Leishmania: current knowledge and future prospects. ACS Infect Dis 4(4):467–477. https://doi.org/10.1021/acsinfecdis.7b00244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Komor AC, Badran AH, Liu DR (2017) CRISPR-based Technologies for the Manipulation of eukaryotic genomes. Cell 169(3):559. https://doi.org/10.1016/j.cell.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  5. Duncan SM, Jones NG, Mottram JC (2017) Recent advances in Leishmania reverse genetics: manipulating a manipulative parasite. Mol Biochem Parasitol 216:30–38. https://doi.org/10.1016/j.molbiopara.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  6. Lander N, Chiurillo MA, Storey M, Vercesi AE, Docampo R (2016) CRISPR/Cas9-mediated endogenous C-terminal tagging of Trypanosoma cruzi genes reveals the Acidocalcisome localization of the inositol 1,4,5-Trisphosphate receptor. J Biol Chem 291(49):25505–25515. https://doi.org/10.1074/jbc.M116.749655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E (2017) A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci 4(5):170095. https://doi.org/10.1098/rsos.170095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang WW, Matlashewski G (2015) CRISPR-Cas9-mediated genome editing in Leishmania donovani. MBio 6(4):e00861. https://doi.org/10.1128/mBio.00861-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peng D, Kurup SP, Yao PY, Minning TA, Tarleton RL (2015) CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. MBio 6(1):e02097-02014. https://doi.org/10.1128/mBio.02097-14

    Article  CAS  Google Scholar 

  10. Soares Medeiros LC, South L, Peng D, Bustamante JM, Wang W, Bunkofske M, Perumal N, Sanchez-Valdez F, Tarleton RL (2017) Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-Cas9 Ribonucleoproteins. MBio 8(6). https://doi.org/10.1128/mBio.01788-17

  11. Fernandez-Prada C, Sharma M, Plourde M, Bresson E, Roy G, Leprohon P, Ouellette M (2018) High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. Int J Parasitol Drugs Drug Resist 8(2):165–173. https://doi.org/10.1016/j.ijpddr.2018.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang WW, Lypaczewski P, Matlashewski G (2017) Optimized CRISPR-Cas9 genome editing for Leishmania and its use to target a multigene family, induce chromosomal translocation, and study DNA break repair mechanisms. mSphere 2(1):e00340-16. https://doi.org/10.1128/mSphere.00340-16

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lander N, Li ZH, Niyogi S, Docampo R (2015) CRISPR/Cas9-induced disruption of Paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in Flagellar attachment. MBio 6(4):e01012. https://doi.org/10.1128/mBio.01012-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishemgulova A, Hlavacova J, Majerova K, Butenko A, Lukes J, Votypka J, Volf P, Yurchenko V (2018) CRISPR/Cas9 in Leishmania mexicana: a case study of LmxBTN1. PLoS One 13(2):e0192723. https://doi.org/10.1371/journal.pone.0192723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sollelis L, Ghorbal M, MacPherson CR, Martins RM, Kuk N, Crobu L, Bastien P, Scherf A, Lopez-Rubio JJ, Sterkers Y (2015) First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cell Microbiol 17(10):1405–1412. https://doi.org/10.1111/cmi.12456

    Article  CAS  PubMed  Google Scholar 

  16. Costa FC, Francisco AF, Jayawardhana S, Calderano SG, Lewis MD, Olmo F, Beneke T, Gluenz E, Sunter J, Dean S, Kelly JM, Taylor MC (2018) Expanding the toolbox for Trypanosoma cruzi: a parasite line incorporating a bioluminescence-fluorescence dual reporter and streamlined CRISPR/Cas9 functionality for rapid in vivo localisation and phenotyping. PLoS Negl Trop Dis 12(4):e0006388. https://doi.org/10.1371/journal.pntd.0006388

    Article  PubMed  PubMed Central  Google Scholar 

  17. Martel D, Beneke T, Gluenz E, Spath GF, Rachidi N (2017) Characterisation of casein kinase 1.1 in Leishmania donovani using the CRISPR Cas9 toolkit. Biomed Res Int 2017:4635605. https://doi.org/10.1155/2017/4635605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bassett A, Liu JL (2014) CRISPR/Cas9 mediated genome engineering in Drosophila. Methods 69(2):128–136. https://doi.org/10.1016/j.ymeth.2014.02.019

    Article  CAS  PubMed  Google Scholar 

  19. Schumann Burkard G, Jutzi P, Roditi I (2011) Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol Biochem Parasitol 175(1):91–94. https://doi.org/10.1016/j.molbiopara.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  20. Dyer P, Dean S, Sunter J (2016) High-throughput gene tagging in Trypanosoma brucei. J Vis Exp (114). https://doi.org/10.3791/54342

  21. Peng D, Tarleton R (2015) EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb Genom 1(4):e000033. https://doi.org/10.1099/mgen.0.000033

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rotureau B, Gego A, Carme B (2005) Trypanosomatid protozoa: a simplified DNA isolation procedure. Exp Parasitol 111(3):207–209. https://doi.org/10.1016/j.exppara.2005.07.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Gluenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Beneke, T., Gluenz, E. (2019). LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9. In: Clos, J. (eds) Leishmania. Methods in Molecular Biology, vol 1971. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9210-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9210-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9209-6

  • Online ISBN: 978-1-4939-9210-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics