Skip to main content

Genome Sequencing and Interrogation of Genome Databases: A Guide to Neisseria meningitidis Genomics

  • Protocol
  • First Online:
Neisseria meningitidis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1969))

Abstract

Whole genome sequencing (WGS) has revolutionized molecular microbiology, allowing the population biology of bacterial pathogens to be examined with greater accuracy and detail. The study of Neisseria meningitidis isolates, in particular, has benefitted from the availability of WGS data allowing outbreak cases, hyper-invasive lineages, molecular epidemiology, and vaccine coverage to be determined. Here, we describe a suite of protocols for the optimum recovery and analysis of WGS data, including a brief overview of methods for N. meningitidis DNA extraction, sequencing, and analysis. Downstream analysis tools are described including a step-by-step guide to the use of PubMLST.org/neisseria. This freely accessible website provides a resource for the Neisseria community allowing the diversity of the meningococcal population to be extracted and exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harrison OB, Schoen C, Retchless AC, Wang X, Jolley KA, Bray JE et al (2017) Neisseria genomics: current status and future perspectives. Pathog Dis 75(6):ftx060

    Article  Google Scholar 

  2. Mikheyev AS, Tin MM (2014) A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour 14(6):1097–1102

    Article  CAS  Google Scholar 

  3. Lam HY, Clark MJ, Chen R, Natsoulis G, O'Huallachain M, Dewey FE et al (2012) Performance comparison of whole-genome sequencing platforms. Nat Biotechnol 30(1):78–82

    Article  CAS  Google Scholar 

  4. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426

    Article  Google Scholar 

  5. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  CAS  Google Scholar 

  6. Zerbino D (2010) Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics 11(5):1–12

    Google Scholar 

  7. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  Google Scholar 

  8. Hill DMC, Lucidarme J, Gray SJ, Newbold LS, Ure R, Brehony C et al (2015) Genomic epidemiology of age-associated meningococcal lineages in national surveillance: an observational cohort study. Lancet Infect Dis 15(12):1420–1428

    Article  Google Scholar 

  9. Bratcher HB, Corton C, Jolley KA, Parkhill J, Maiden MC (2014) A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics 15:1138

    Article  Google Scholar 

  10. Earl D, Bradnam K, St John J, Darling A, Lin DW, Fass J et al (2011) Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res 21(12):2224–2241

    Article  CAS  Google Scholar 

  11. Jolley KA, Maiden MC (2010) BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11(1):595

    Article  Google Scholar 

  12. Brehony C, Rodrigues CM, Borrow R, Smith A, Cunney R, Moxon ER et al (2016) Distribution of Bexsero® Antigen Sequence Types (BASTs) in invasive meningococcal disease isolates: implications for immunisation. Vaccine 34(39):4690–4697

    Article  CAS  Google Scholar 

  13. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA et al (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287(5459):1809–1815

    Article  CAS  Google Scholar 

  14. Bennett JS, Jolley KA, Earle SG, Corton C, Bentley SD, Parkhill J et al (2012) A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 158(Pt 6):1570–1580

    Article  CAS  Google Scholar 

  15. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony CM, Colles FM et al (2012) Ribosomal multi-locus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 158:1005–1015

    Article  CAS  Google Scholar 

  16. Heydari M, Marashi SA, Tusserkani R, Sadeghi M (2014) Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals. Bio Systems 124:86–94

    Article  Google Scholar 

  17. Caugant DA, Maiden MC (2009) Meningococcal carriage and disease—population biology and evolution. Vaccine 27(Suppl 2):B64–B70

    Article  Google Scholar 

  18. Jolley KA, Brehony C, Maiden MC (2007) Molecular typing of meningococci: recommendations for target choice and nomenclature. FEMS Microbiol Rev 31(1):89–96

    Article  CAS  Google Scholar 

  19. Rodrigues CMC, Lucidarme J, Borrow R, Smith A, Cameron JC, Moxon ER et al (2018) Genomic surveillance of 4CMenB vaccine antigenic variants among disease-causing Neisseria meningitidis isolates, United Kingdom, 2010–2016. Emerg Infect Dis 24(4):673–682

    Article  CAS  Google Scholar 

  20. Parikh SR, Campbell H, Beebeejaun K, Ribeiro S, Gray SJ, Borrow R et al (2016) Meningococcal group W disease in infants and potential prevention by vaccination. Emerg Infect Dis 22(8):1505–1507

    Article  Google Scholar 

  21. Rodrigues C, Brehony C, Borrow R, Smith A, Cunney R, Moxon ER et al (2017) Genomic surveillance and meningococcal group B vaccine coverage estimates after introduction of the vaccine into the national immunisation programme in the UK. Lancet 389:85

    Article  Google Scholar 

  22. MRF-MGL. MRF Meningococcus Genome Library: Meningitis Research Foundation. Available from: http://www.meningitis.org/research/genome

  23. Jolley KA, Hill DM, Bratcher HB, Harrison OB, Feavers IM, Parkhill J et al (2012) Resolution of a meningococcal disease outbreak from whole genome sequence data with rapid web-based analysis methods. J Clin Microbiol 50(9):3046–3053

    Article  Google Scholar 

  24. Moulton V (2003) SplitsTree: a network-based tool for exploring evolutionary relationships in molecular data. In: Salemi M, Vandamme AM (eds) The phylogenetic handbook: a practical approach to DNA and protein phylogeny. Cambridge University Press, Cambridge, pp 312–328

    Google Scholar 

  25. Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21(2):255–265

    Article  CAS  Google Scholar 

  26. Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C, Francisco AP et al (2018) GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 28:1395–1404

    Article  CAS  Google Scholar 

  27. Didelot X, Wilson DJ (2015) ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol 11(2):e1004041

    Article  Google Scholar 

  28. Didelot X, Falush D (2007) Inference of bacterial microevolution using multilocus sequence data. Genetics 175(3):1251–1266

    Article  CAS  Google Scholar 

  29. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  Google Scholar 

  30. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690

    Article  CAS  Google Scholar 

  31. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22(2):160–174

    Article  CAS  Google Scholar 

  32. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 16(10):944–945

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odile B. Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bratcher, H.B., Harrison, O.B., Maiden, M.C.J. (2019). Genome Sequencing and Interrogation of Genome Databases: A Guide to Neisseria meningitidis Genomics. In: Seib, K., Peak, I. (eds) Neisseria meningitidis. Methods in Molecular Biology, vol 1969. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9202-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9202-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9201-0

  • Online ISBN: 978-1-4939-9202-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics