Skip to main content

Extraction of Ancient DNA from Plant Remains

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1963))

Abstract

Ancient plant remains from archaeological sites, paleoenvironmental contexts, and herbaria provide excellent opportunities for interrogating plant genetics over Quaternary timescales using ancient DNA (aDNA)-based analyses. A variety of plant tissues, preserved primarily by desiccation and anaerobic waterlogging, have proven to be viable sources of aDNA. Plant tissues are anatomically and chemically diverse and therefore require optimized DNA extraction approaches. Here, we describe a plant DNA isolation protocol that performs well in most contexts. We include recommendations for optimization to retain the very short DNA fragments that are expected to be preserved in degraded tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brown TA et al (2015) Recent advances in ancient DNA research and their implications for archaeobotany. Veg Hist Archaeobotany 24:207–214

    Article  Google Scholar 

  2. Gugerli F, Parducci L, Petit RJ (2005) Ancient plant DNA: review and prospects. New Phytol 166(2):409–418

    Article  CAS  Google Scholar 

  3. Palmer SA, Smith O, Allaby RG (2012) The blossoming of plant archaeogenetics. Ann Anat 20:146–156

    Article  Google Scholar 

  4. Schlumbaum A, Tensen M, Jaenicke-Després V (2008) Ancient plant DNA in archaeobotany. Veg Hist Archaeobotany 17(2):233–244

    Article  Google Scholar 

  5. Wales N, Andersen K, Cappellini E (2014) Ancient biomolecules from archaeobotanical remains. In: Marston JM, d’Alpoim Guedes J, Warinner C (eds) Method and theory in paleoethnobotany. University Press of Colorado, Boulder, pp 293–313

    Google Scholar 

  6. Cappellini E, Collins MJ, Gilbert MTP (2014) Unlocking ancient protein palimpsests. Science 343(6177):1320–1322

    Article  CAS  Google Scholar 

  7. Wagner S et al (2018) High-throughput DNA sequencing of ancient wood. Mol Ecol 27(5):1138–1154

    Article  CAS  Google Scholar 

  8. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  9. Kistler L (2012) Ancient DNA extraction from plants. Methods Mol Biol 840:71–79

    Article  CAS  Google Scholar 

  10. Gutaker RM et al (2017) Extraction of ultrashort DNA molecules from herbarium specimens. BioTechniques 62(2):76–79

    Article  CAS  Google Scholar 

  11. Dumolin-Lapègue S et al (1999) Amplification of oak DNA from ancient and modern wood. Mol Ecol 8(12):2137–2140

    Article  Google Scholar 

  12. Drábková L, Kirschner J, Vlĉek Ĉ (2002) Comparison of seven DNA extraction and amplification protocols in historical herbarium specimens of juncaceae. Plant Mol Biol Report 20(2):161–175

    Article  Google Scholar 

  13. Erickson DL et al (2005) An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proc Natl Acad Sci U S A 102(51):18315–18320

    Article  CAS  Google Scholar 

  14. Goloubinoff P, Pääbo S, Wilson AC (1993) Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens. Proc Natl Acad Sci U S A 90(5):1997–2001

    Article  CAS  Google Scholar 

  15. Allaby RG et al (1997) Evidence for the survival of ancient DNA in charred wheat seeds from European archaeological sites. Anc Biomol 1(2):119–129

    CAS  Google Scholar 

  16. Manen JF et al (2003) Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. J Archaeol Sci 30(6):721–729

    Article  Google Scholar 

  17. Bilgic H et al (2016) Ancient DNA from 8400 Year-Old Çatalhöyük wheat: implications for the origin of Neolithic agriculture. PLoS One 11(3):e0151974

    Article  Google Scholar 

  18. Nistelberger HM et al (2016) The efficacy of high-throughput sequencing and target enrichment on charred archaeobotanical remains. Sci Reports 6:37347

    Article  CAS  Google Scholar 

  19. da Fonseca RR et al (2015) The origin and evolution of maize in the Southwestern United States. Nat Plants 1:14003

    Article  Google Scholar 

  20. Mascher M et al (2016) Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet 48(9):1089–1093

    Article  CAS  Google Scholar 

  21. Ramos-Madrigal J et al (2016) Genome sequence of a 5310-year-old maize cob provides insights into the early stages of maize domestication. Curr Biol 26(23):3195–3201

    Article  CAS  Google Scholar 

  22. Dabney J et al (2013) Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci 110(39):15758–15763

    Article  CAS  Google Scholar 

  23. Wales N et al (2014) Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains. PLoS One 9(1):e86827

    Article  Google Scholar 

  24. Gilbert MTP et al (2004) Ancient mitochondrial DNA from hair. Curr Biol 14(12):R463–R464

    Article  CAS  Google Scholar 

  25. Wales N et al (2012) Choosing the best plant for the job: a cost-effective assay to prescreen ancient plant remains destined for shotgun sequencing. PLoS One 7(9):e45644

    Article  CAS  Google Scholar 

  26. Gamba C et al (2016) Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol Ecol Resour 16(2):459–469

    Article  CAS  Google Scholar 

  27. Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol:chloroform. Cold Spring Harb Protoc 2006(1):pdb.prot4455

    Article  Google Scholar 

  28. Wales N et al (2016) The limits and potential of paleogenomic techniques for reconstructing grapevine domestication. J Archaeol Sci 72:57–70

    Article  CAS  Google Scholar 

  29. Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289(5482):1139

    Article  CAS  Google Scholar 

  30. Gilbert MTP et al (2005) Assessing ancient DNA studies. Trends Ecol Evol 20(10):541–544

    Article  Google Scholar 

  31. Champlot S et al (2010) An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS One 5(9):e13042

    Article  Google Scholar 

  32. Korlevic P et al (2015) Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. BioTechniques 59(2):87–93

    Article  CAS  Google Scholar 

  33. Lazaridis I et al (2016) Genomic insights into the origin of farming in the ancient Near East. Nature 536(7617):419–424

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N.W. was supported by the National Science Foundation (Award number DEB-1354622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Logan Kistler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wales, N., Kistler, L. (2019). Extraction of Ancient DNA from Plant Remains. In: Shapiro, B., Barlow, A., Heintzman, P., Hofreiter, M., Paijmans, J., Soares, A. (eds) Ancient DNA. Methods in Molecular Biology, vol 1963. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9176-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9176-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9175-4

  • Online ISBN: 978-1-4939-9176-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics