Skip to main content

A Mass Spectrometry-Based Structural Assay for Activation-Dependent Conformational Changes in β-Arrestins

  • Protocol
  • First Online:
Beta-Arrestins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1957))

Abstract

β-Arrestins are key regulation proteins for G protein-coupled receptors (GPCRs) signaling. Experimental evidence suggests that β-arrestins undergo conformational changes concomitant with binding to activated, phosphorylated GPCRs. We developed a mass spectrometry-based structural proteomic assay to monitor conformational changes associated with the activation of β-arrestins. This assay utilizes synthesized phosphopeptides mimicking phosphorylated C-terminal tails of GPCRs to activate β-arrestins. The activation-dependent conformational changes of β-arrestins are revealed using limited proteolysis coupled with both SDS-PAGE and mass spectrometry analysis. As an in vitro β-arrestin activation assay, this mass spectrometry-based structural method can be adapted as a simple but useful tool to study the nature and extent of conformational changes of β-arrestins downstream of different receptors as well as β-arrestin conformations associated with different functions, such as desensitization, internalization, and signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferguson SS, Zhang J, Barak LS, Caron MG (1998) Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Life Sci 62:1561–1565

    Article  CAS  PubMed  Google Scholar 

  2. Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465

    CAS  PubMed  Google Scholar 

  3. Pierce KL, Luttrell LM, Lefkowitz RJ (2001) New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20:1532–1539

    Article  CAS  PubMed  Google Scholar 

  4. Luttrell LM, Daaka Y, Lefkowitz RJ (1999) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11:177–183

    Article  CAS  PubMed  Google Scholar 

  5. McDonald PH, Lefkowitz RJ (2001) Beta-Arrestins: new roles in regulating heptahelical receptors’ functions. Cell Signal 13:683–689

    Article  CAS  PubMed  Google Scholar 

  6. Gurevich VV, Gurevich EV (2003) The new face of active receptor bound arrestin attracts new partners. Structure (Camb) 11:1037–1042

    Article  CAS  Google Scholar 

  7. Hofmann KP (1999) Signalling states of photoactivated rhodopsin. Novartis Found Symp 224:158–175.; discussion 175–180

    CAS  PubMed  Google Scholar 

  8. Raman D, Osawa S, Weiss ER (1999) Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin. Biochemistry 38:5117–5123

    Article  CAS  PubMed  Google Scholar 

  9. Sippel KC, DeStefano JD, Berson EL, Dryja TP (1998) Evaluation of the human arrestin gene in patients with retinitis pigmentosa and stationary night blindness. Invest Ophthalmol Vis Sci 39:665–670

    CAS  PubMed  Google Scholar 

  10. Rim J, Oprian DD (1995) Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin. Biochemistry 34:11938–11945

    Article  CAS  PubMed  Google Scholar 

  11. Puig J et al (1995) Synthetic phosphopeptide from rhodopsin sequence induces retinal arrestin binding to photoactivated unphosphorylated rhodopsin. FEBS Lett 362:185–188

    Article  CAS  PubMed  Google Scholar 

  12. Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. J Biol Chem 268:11628–11638

    CAS  PubMed  Google Scholar 

  13. Palczewski K, Riazance-Lawrence JH, Johnson WC Jr (1992) Structural properties of arrestin studied by chemical modification and circular dichroism. Biochemistry 31:3902–3906

    Article  CAS  PubMed  Google Scholar 

  14. Kotake S, Hey P, Mirmira RG, Copeland RA (1991) Physicochemical characterization of bovine retinal arrestin. Arch Biochem Biophys 285:126–133

    Article  CAS  PubMed  Google Scholar 

  15. McDowell JH et al (1999) Sulfhydryl reactivity demonstrates different conformational states for arrestin, arrestin activated by a synthetic phosphopeptide, and constitutively active arrestin. Biochemistry 38:6119–6125

    Article  CAS  PubMed  Google Scholar 

  16. McDowell JH et al (2001) Activation of arrestin: requirement of phosphorylation as the negative charge on residues in synthetic peptides from the carboxyl-terminal region of rhodopsin. Invest Ophthalmol Vis Sci 42:1439–1443

    CAS  PubMed  Google Scholar 

  17. Palczewski K, Pulvermuller A, Buczylko J, Hofmann KP (1991) Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J Biol Chem 266:18649–18654

    CAS  PubMed  Google Scholar 

  18. Schleicher A, Kuhn H, Hofmann KP (1989) Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry 28:1770–1775

    Article  CAS  PubMed  Google Scholar 

  19. Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure (Camb) 9:869–880

    Article  CAS  Google Scholar 

  20. Schubert C et al (1999) Visual arrestin activity may be regulated by self-association. J Biol Chem 274:21186–21190

    Article  CAS  PubMed  Google Scholar 

  21. Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269

    Article  CAS  PubMed  Google Scholar 

  22. Milano SK, Pace HC, Kim YM, Brenner C, Benovic JL (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41:3321–3328

    Article  CAS  PubMed  Google Scholar 

  23. Granzin J et al (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391:918–921

    Article  CAS  PubMed  Google Scholar 

  24. Shukla AK et al (2014) Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512:218–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shukla AK et al (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nobles KN, Guan Z, Xiao K, Oas TG, Lefkowitz RJ (2007) The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins 1 and −2. J Biol Chem 282:21370–21381

    Article  CAS  PubMed  Google Scholar 

  27. Xiao K, Shenoy SK, Nobles K, Lefkowitz RJ (2004) Activation-dependent conformational changes in {beta}-arrestin 2. J Biol Chem 279:55744–55753

    Article  CAS  PubMed  Google Scholar 

  28. Palczewski K, Buczylko J, Imami NR, McDowell JH, Hargrave PA (1991) Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin. J Biol Chem 266:15334–15339

    CAS  PubMed  Google Scholar 

  29. Xiao K, Chung J, Wall A (2015) The power of mass spectrometry in structural characterization of GPCR signaling. J Recept Signal Transduct Res 35:213–219

    Article  CAS  PubMed  Google Scholar 

  30. Xiao K, Sun J (2017) Elucidating structural and molecular mechanisms of beta-arrestin-biased agonism at GPCRs via MS-based proteomics. Cell Signal 41:56–64

    Google Scholar 

  31. Shenoy SK, Lefkowitz RJ (2003) Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J 375:503–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sutton RB et al (2005) Crystal structure of cone arrestin at 2.3A: evolution of receptor specificity. J Mol Biol 354:1069–1080

    Article  CAS  PubMed  Google Scholar 

  33. Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J Mol Biol 406:467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Granzin J et al (2012) Crystal structure of p44, a constitutively active splice variant of visual arrestin. J Mol Biol 416:611–618. https://doi.org/10.1016/j.jmb.2012.01.028

    Article  CAS  PubMed  Google Scholar 

  35. Kim YJ et al (2013) Crystal structure of pre-activated arrestin p44. Nature 497:142–146

    Article  CAS  PubMed  Google Scholar 

  36. Kang Y et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567. https://doi.org/10.1038/nature14656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang J et al (1997) Molecular mechanisms of G protein-coupled receptor signaling: role of G protein-coupled receptor kinases and arrestins in receptor desensitization and resensitization. Receptors Channels 5:193–199

    CAS  PubMed  Google Scholar 

  38. Granzin J, Stadler A, Cousin A, Schlesinger R, Batra-Safferling R (2015) Structural evidence for the role of polar core residue Arg175 in arrestin activation. Sci Rep 5:15808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Q et al (2017) Structural basis of arrestin-3 activation and signaling. Nat Commun 8:1427

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhou XE et al (2017) Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170:457–469 e413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported, in part, by US National Institutes of Health grant no HL-075443 Proteomics Core support to K.X. This publication was also made possible by seed funding support to K.X. from the Department of Pharmacology and Chemical Biology, the University of Pittsburgh and Vascular Medicine Institute, the Hemophilia Center of Western Pennsylvania, and the Institute for Transfusion Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunhong Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhao, Y., Xiao, K. (2019). A Mass Spectrometry-Based Structural Assay for Activation-Dependent Conformational Changes in β-Arrestins. In: Scott, M., Laporte, S. (eds) Beta-Arrestins. Methods in Molecular Biology, vol 1957. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9158-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9158-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9157-0

  • Online ISBN: 978-1-4939-9158-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics