Skip to main content

Purification of Glycosylphosphatidylinositol-Anchored Mucins from Trypanosoma cruzi Trypomastigotes and Synthesis of α-Gal-Containing Neoglycoproteins: Application as Biomarkers for Reliable Diagnosis and Early Assessment of Chemotherapeutic Outcomes of Chagas Disease

  • Protocol
  • First Online:
T. cruzi Infection

Abstract

Chagas disease (ChD), caused by the protozoan parasite Trypanosoma cruzi, affects millions of people worldwide. Chemotherapy is restricted to two drugs, which are partially effective and may cause severe side effects, leading to cessation of treatment in a significant number of patients. Currently, there are no biomarkers to assess therapeutic efficacy of these drugs in the chronic stage. Moreover, no preventive or therapeutic vaccines are available. In this chapter, we describe the purification of Trypanosoma cruzi trypomastigote-derived glycosylphosphatidylinositol (GPI)-anchored mucins (tGPI-mucins) for their use as antigens for the reliable primary or confirmatory diagnosis and as prognostic biomarkers for early assessment of cure following ChD chemotherapy. We also describe, as an example, the synthesis of a potential tGPI-mucin-derived α-Gal-terminating glycan and its coupling to a carrier protein for use as diagnostic and prognostic biomarker in ChD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2002) Control of Chagas disease. WHO Tech Rep Ser 905:24–28

    Google Scholar 

  2. Carod-Artal FJ, Gascon J (2010) Chagas disease and stroke. Lancet Neurol 9(5):533–542. https://doi.org/10.1016/S1474-4422(10)70042-9

    Article  PubMed  Google Scholar 

  3. Gascon J, Bern C, Pinazo MJ (2010) Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop 115(1–2):22–27. https://doi.org/10.1016/j.actatropica.2009.07.019

    Article  PubMed  Google Scholar 

  4. Perez-Molina JA, Molina I (2018) Chagas disease. Lancet 391(10115):82–94. https://doi.org/10.1016/S0140-6736(17)31612-4

    Article  PubMed  Google Scholar 

  5. Alpern JD, Lopez-Velez R, Stauffer WM (2017) Access to benznidazole for Chagas disease in the United States-Cautious optimism? PLoS Negl Trop Dis 11(9):e0005794. https://doi.org/10.1371/journal.pntd.0005794

    Article  PubMed  PubMed Central  Google Scholar 

  6. Urbina JA (2015) Recent clinical trials for the etiological treatment of chronic chagas disease: advances, challenges and perspectives. J Eukaryot Microbiol 62(1):149–156. https://doi.org/10.1111/jeu.12184

    Article  CAS  PubMed  Google Scholar 

  7. Viotti R, Vigliano C, Lococo B, Alvarez MG, Petti M, Bertocchi G, Armenti A (2009) Side effects of benznidazole as treatment in chronic Chagas disease: fears and realities. Expert Rev Anti Infect Ther 7(2):157–163. https://doi.org/10.1586/14787210.7.2.157

    Article  CAS  PubMed  Google Scholar 

  8. Sguassero Y, Roberts KN, Harvey GB, Comande D, Ciapponi A, Cuesta CB, Aguiar C, Castro AM, Danesi E, de Andrade AL, de Lana M, Escriba JM, Fabbro DL, Fernandes CD, Flores-Chavez M, Hasslocher-Moreno AM, Jackson Y, Lacunza CD, Machado-de-Assis GF, Maldonado M, Meira WSF, Molina I, Monje-Rumi MM, Munoz-San Martin C, Murcia L, Nery de Castro C, Sanchez Negrette O, Segovia M, Silveira CAN, Solari A, Steindel M, Streiger ML, Vera de Bilbao N, Zulantay I, Sosa-Estani S (2018) Course of serological tests in treated subjects with chronic Trypanosoma cruzi infection: a systematic review and meta-analysis of individual participant data. Int J Infect Dis 73:93–101. https://doi.org/10.1016/j.ijid.2018.05.019

    Article  PubMed  PubMed Central  Google Scholar 

  9. Viotti R, Alarcon de Noya B, Araujo-Jorge T, Grijalva MJ, Guhl F, Lopez MC, Ramsey JM, Ribeiro I, Schijman AG, Sosa-Estani S, Torrico F, Gascon J, Latin American Network for Chagas Disease N (2014) Towards a paradigm shift in the treatment of chronic Chagas disease. Antimicrob Agents Chemother 58(2):635–639. https://doi.org/10.1128/AAC.01662-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ribeiro I, Sevcsik AM, Alves F, Diap G, Don R, Harhay MO, Chang S, Pecoul B (2009) New, improved treatments for Chagas disease: from the R&D pipeline to the patients. PLoS Negl Trop Dis 3(7):e484. https://doi.org/10.1371/journal.pntd.0000484

    Article  PubMed  PubMed Central  Google Scholar 

  11. No authors (2015) Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 90(6):33–43

    Google Scholar 

  12. Pinazo MJ, Thomas MC, Bustamante J, Almeida IC, Lopez MC, Gascon J (2015) Biomarkers of therapeutic responses in chronic Chagas disease: state of the art and future perspectives. Mem Inst Oswaldo Cruz 110(3):422–432. https://doi.org/10.1590/0074-02760140435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perez-Molina JA, Perez AM, Norman FF, Monge-Maillo B, Lopez-Velez R (2015) Old and new challenges in Chagas disease. Lancet Infect Dis 15:1347–1356. https://doi.org/10.1016/S1473-3099(15)00243-1

    Article  PubMed  Google Scholar 

  14. Acosta-Serrano A, Hutchinson C, Nakayasu ES, Almeida IC, Carrington M (2007) Comparison and evolution of the surface architecture of trypanosomatid parasites. In: Barry JD, Mottram JC, McCulloch R, Acosta-Serrano A (eds) Trypanosomes: after the genome. Horizon Scientific Press, Norwich, pp 319–337

    Google Scholar 

  15. Buscaglia CA, Campo VA, Frasch AC, Di Noia JM (2006) Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 4(3):229–236. https://doi.org/10.1038/nrmicro1351

    Article  CAS  PubMed  Google Scholar 

  16. Frasch AC (2000) Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol Today 16(7):282–286

    Article  CAS  PubMed  Google Scholar 

  17. Giorgi ME, de Lederkremer RM (2011) Trans-sialidase and mucins of Trypanosoma cruzi: an important interplay for the parasite. Carbohydr Res 346(12):1389–1393. https://doi.org/10.1016/j.carres.2011.04.006

    Article  CAS  PubMed  Google Scholar 

  18. De Pablos LM, Osuna A (2012) Multigene families in Trypanosoma cruzi and their role in infectivity. Infect Immun 80(7):2258–2264. https://doi.org/10.1128/IAI.06225-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Almeida IC, Ferguson MAJ, Schenkman S, Travassos LR (1994) Lytic anti-α-galactosyl antibodies from patients with chronic Chagas’ disease recognize novel O-linked oligosaccharides on mucin-like glycosylphosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem J 304:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Galili U (2017) Anti-gal in humans and its antigen the α-gal epitope. In: Galili U (ed) The natural anti-gal antibody as foe turned friend in medicine, 1st edn. Elsevier, Cambridge, MA, pp 1–18

    Google Scholar 

  21. Galili U, Swanson K (1991) Gene sequences suggest inactivation of alpha-1,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc Natl Acad Sci U S A 88(16):7401–7404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Almeida IC, Milani SR, Gorin PA, Travassos LR (1991) Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-alpha-galactosyl antibodies. J Immunol 146(7):2394–2400

    CAS  PubMed  Google Scholar 

  23. Gazzinelli RT, Pereira ME, Romanha A, Gazzinelli G, Brener Z (1991) Direct lysis of Trypanosoma cruzi: a novel effector mechanism of protection mediated by human anti-gal antibodies. Parasite Immunol 13(4):345–356

    Article  CAS  PubMed  Google Scholar 

  24. Almeida IC, Covas DT, Soussumi LM, Travassos LR (1997) A highly sensitive and specific chemiluminescent enzyme-linked immunosorbent assay for diagnosis of active Trypanosoma cruzi infection. Transfusion 37(8):850–857

    Article  CAS  PubMed  Google Scholar 

  25. Almeida IC, Krautz GM, Krettli AU, Travassos LR (1993) Glycoconjugates of Trypanosoma cruzi: a 74 kD antigen of trypomastigotes specifically reacts with lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas disease. J Clin Lab Anal 7(6):307–316

    Article  CAS  PubMed  Google Scholar 

  26. Avila JL, Rojas M, Galili U (1989) Immunogenic Gal alpha 1–3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania. J Immunol 142(8):2828–2834

    CAS  PubMed  Google Scholar 

  27. Andrade AL, Martelli CM, Oliveira RM, Silva SA, Aires AI, Soussumi LM, Covas DT, Silva LS, Andrade JG, Travassos LR, Almeida IC (2004) Short report: benznidazole efficacy among Trypanosoma cruzi-infected adolescents after a six-year follow-up. Am J Trop Med Hyg 71(5):594–597

    Article  CAS  PubMed  Google Scholar 

  28. Torrico F, Gascon J, Ortiz L, Alonso-Vega C, Pinazo MJ, Schijman A, Almeida IC, Alves F, Strub-Wourgaft N, Ribeiro I, Group ES (2018) Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: a proof-of-concept, randomised, placebo-controlled trial. Lancet Infect Dis 18(4):419–430. https://doi.org/10.1016/S1473-3099(17)30538-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Andrade AL, Zicker F, de Oliveira RM, Almeida Silva S, Luquetti A, Travassos LR, Almeida IC, de Andrade SS, de Andrade JG, Martelli CM (1996) Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet 348(9039):1407–1413. S0140673696041281 [pii]

    Article  PubMed  Google Scholar 

  30. Ashmus RA, Schocker NS, Cordero-Mendoza Y, Marques AF, Monroy EY, Pardo A, Izquierdo L, Gállego M, Gascon J, Almeida IC, Michael K (2013) Potential use of synthetic α-galactosyl-containing glycotopes of the parasite Trypanosoma cruzi as diagnostic antigens for Chagas disease. Org Biomol Chem 11:5579–5583

    Article  CAS  PubMed  Google Scholar 

  31. Schocker NS, Portillo S, Ashmus RA, Brito CRN, Silva IE, Cordero-Mendoza Y, Marques AF, Monroy EY, Pardo A, Izquierdo L, Gállego M, Gascon J, Almeida IC, Michael K (2018) Probing for Trypanosoma cruzi cell surface glycobiomarkers for the diagnosis and follow-up of chemotherapy of Chagas disease. In: Witzczak ZJ, Bielski R (eds) Coupling and decoupling of diverse molecular units in glycosciences. Springer, Cham, pp 195–211. https://doi.org/10.1007/978-3-319-65587-1

    Chapter  Google Scholar 

  32. Schocker NS, Portillo S, Brito CRN, Marques AF, Almeida IC, Michael K (2016) Synthesis of Galα(1,3)Galβ(1,4)GlcNAcα-, Galβ(1,4)GlcNAcα- and GlcNAc-containing neoglycoproteins and their immunological evaluation in the context of Chagas disease. Glycobiology 26(1):39–50

    CAS  PubMed  Google Scholar 

  33. Izquierdo L, Marques AF, Gallego M, Sanz S, Tebar S, Riera C, Quinto L, Aldasoro E, Almeida IC, Gascon J (2013) Evaluation of a chemiluminescent enzyme-linked immunosorbent assay for the diagnosis of Trypanosoma cruzi infection in a nonendemic setting. Mem Inst Oswaldo Cruz 108(7):928–931. https://doi.org/10.1590/0074-0276130112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hull RN, Cherry WR, Tritch OJ (1962) Growth characteristics of monkey kidney cell strains LLC-MK1, LLC-MK2, and LLC-MK2(NCTC-3196) and their utility in virus research. J Exp Med 115:903–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Silva LHP, Nussenzweig V (1953) Sobre uma cepa de Trypanosoma cruzi altamente virulenta para o camundongo branco. Folia Clinica et Biologica (S Paulo) 20:191–207

    Google Scholar 

  36. Andrews NW, Colli W (1982) Adhesion and interiorization of Trypanosoma cruzi in mammalian cells. J Protozool 29(2):264–269

    Article  CAS  PubMed  Google Scholar 

  37. Kimura A, Imamura A, Ando H, Ishida H, Kiso M (2006) A novel synthetic route to a-galactosyl ceramides and iGb3 using DTBS-directed α-selective galactosylation. Synlett 2006(15):2379–2382. https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2006-949649

  38. Imamura A, Kimura A, Ando H, Ishida H, Kiso M (2006) Extended application of di-tert-butylsilylene-directed a-predominant galactosylation compatible with C2-participating groups toward the assembly of various glycosides. Chem Eur J 12:8862–8870

    Article  CAS  PubMed  Google Scholar 

  39. Stults JT (1995) Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Curr Opin Struct Biol 5:691–698

    Article  CAS  PubMed  Google Scholar 

  40. Schiettecatte J, Anckaert E, Smitz J (2012) Interferences in immunoassays. In: Chiu NHL, Christopoulos TK (eds) Advances in Immunoassay Technology. IntechOpen, Rijeka. https://doi.org/10.5772/35797

    Chapter  Google Scholar 

Download references

Acknowledgments

This study was funded by the NIH grants 1U01AI129783-01A1 (to ICA, JG, and FT), 1R21AI07961801A1 (to KM) and 1R21AI115451 (to ICA), and UTEP College of Science Multidisciplinary Pilot Projects and Collaborations Grant (to ICA and KM). We would like to thank the UTEP/BBRC Biomolecule Analysis Core Facility (BACF) for access to the LC–MS and MS instruments. All BBRC/UTEP Core Facilities were supported by a grant (2G12MD007592) from the National Institute on Minority Health and Health Disparities (NIMHD). SP was recipient of Dr. Keelung Hong Graduate Research Fellowship and UTEP Dodson Research Grant. EI was the recipient of the Diana Natalicio Doctoral Dissertation Fellowship, UTEP. UOR and EI were fellows of the RISE Research Scholars Program (R25GM069621-11 to Dr. Renato Aguilera, PI). NKH was recipient of Frank B. Cotton Trust Scholarship, from UTEP Graduate School. We are grateful to Dr. Sergio Sosa-Estani, Drugs for Neglected Diseases Initiative (DNDi), for kindly providing travel funds to ON to visit the Dept. of Biological Sciences, University of Texas at El Paso. ICA, FT, JG, MJP, ON, and BAN are members of the NHEPACHA (New Tools for the Diagnosis and Evaluation of Chagas Disease) network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor C. Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ortega-Rodriguez, U. et al. (2019). Purification of Glycosylphosphatidylinositol-Anchored Mucins from Trypanosoma cruzi Trypomastigotes and Synthesis of α-Gal-Containing Neoglycoproteins: Application as Biomarkers for Reliable Diagnosis and Early Assessment of Chemotherapeutic Outcomes of Chagas Disease. In: Gómez, K., Buscaglia, C. (eds) T. cruzi Infection. Methods in Molecular Biology, vol 1955. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9148-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9148-8_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9147-1

  • Online ISBN: 978-1-4939-9148-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics