Skip to main content

Using BRIE to Detect and Analyze Splicing Isoforms in scRNA-Seq Data

  • Protocol
  • First Online:
Book cover Computational Methods for Single-Cell Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1935))

Abstract

Single-cell RNA-seq (scRNA-seq) provides a comprehensive measurement of stochasticity in transcription, but the limitations of the technology have prevented its application to dissect variability in RNA processing events such as splicing. In this chapter, we review the challenges in splicing isoform quantification in scRNA-seq data and discuss BRIE (Bayesian regression for isoform estimation), a recently proposed Bayesian hierarchical model which resolves these problems by learning an informative prior distribution from sequence features. We illustrate the usage of BRIE with a case study on 130 mouse cells during gastrulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grün D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163:799–810

    Article  PubMed  Google Scholar 

  2. Grün D, Lyubimova A, Kester L et al (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525:251–255

    Article  PubMed  Google Scholar 

  3. Gaublomme JT, Yosef N, Lee Y et al (2015) Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163:1400–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Papalexi E, Satija R (2018) Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 18:35

    Article  CAS  PubMed  Google Scholar 

  5. Scialdone A, Tanaka Y, Jawaid W et al (2016) Resolving early mesoderm diversification through single-cell expression profiling. Nature 535:289–293. https://doi.org/10.1038/nature18633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wagner DE, Weinreb C, Collins ZM et al (2018) Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 80:eaar4362

    Google Scholar 

  7. Stubbington MJT, Lönnberg T, Proserpio V et al (2016) T cell fate and clonality inference from single-cell transcriptomes. Nat Methods 13:329

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lönnberg T, Svensson V, James KR et al (2017) Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria. Sci Immunol 2(9):eaal2192

    Article  PubMed  PubMed Central  Google Scholar 

  9. Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tirosh I, Izar B, Prakadan SM et al (2016) Dissecting the multicellular exosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196. https://doi.org/10.1126/science.aad0501.Dissecting

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baralle FE, Giudice J (2017) Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18:437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dillman AA, Hauser DN, Gibbs JR et al (2013) mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat Neurosci 16:499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scotti MM, Swanson MS (2016) RNA mis-splicing in disease. Nat Rev Genet 17:19

    Article  CAS  PubMed  Google Scholar 

  15. Ziegenhain C, Vieth B, Parekh S et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631–643

    Article  CAS  PubMed  Google Scholar 

  16. Faigenbloom L, Rubinstein ND, Kloog Y et al (2015) Regulation of alternative splicing at the single-cell level. Mol Syst Biol 11:845

    Article  PubMed  PubMed Central  Google Scholar 

  17. Song Y, Botvinnik OB, Lovci MT et al (2017) Single-cell alternative splicing analysis with expedition reveals splicing dynamics during neuron differentiation. Mol Cell 67:148–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. La Manno G, Soldatov R, Hochgerner H et al (2018) RNA velocity of single cells. Nature 560.7719:494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Linker SM, Urban L, Clark S et al (2018) Combined single cell profiling of expression and DNA methylation reveals splicing regulation and heterogeneity. bioRxiv:328138

    Google Scholar 

  20. Huang Y, Sanguinetti G (2017) BRIE: transcriptome-wide splicing quantification in single cells. Genome Biol 18:123. https://doi.org/10.1101/098517

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huang Y, Sanguinetti G (2016) Statistical modeling of isoform splicing dynamics from RNA-seq time series data. Bioinformatics 32:2965–2972

    Article  CAS  PubMed  Google Scholar 

  22. Liu P, Sanalkumar R, Bresnick EH et al (2016) Integrative analysis with ChIP-seq advances the limits of transcript quantification from RNA-seq. Genome Res 26:1124–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiong HY, Alipanahi B, Lee LJ et al (2015) The human splicing code reveals new insights into the genetic determinants of disease. Science 1254806:347

    Google Scholar 

  24. Katz Y, Wang ET, Airoldi EM, Burge CB (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7:1009–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525

    Article  CAS  PubMed  Google Scholar 

  27. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  29. Katz Y, Wang ET, Silterra J et al (2015) Quantitative visualization of alternative exon expression from RNA-seq data. Bioinformatics 31:2400–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Sanguinetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, Y., Sanguinetti, G. (2019). Using BRIE to Detect and Analyze Splicing Isoforms in scRNA-Seq Data. In: Yuan, GC. (eds) Computational Methods for Single-Cell Data Analysis. Methods in Molecular Biology, vol 1935. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9057-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9057-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9056-6

  • Online ISBN: 978-1-4939-9057-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics