Skip to main content

Assays for Light Chain Amyloidosis Formation and Cytotoxicity

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1873))

Abstract

Common biophysical techniques like absorption and fluorescence spectroscopy, microscopy, and light scattering studies have been in use to investigate fibril assembly for a long time. However, there is sometimes a lack of consensus from the findings of an individual technique when compared in parallel with the other techniques. In this chapter, we aim to provide a concise compilation of techniques that can effectively be used to obtain a comprehensive representation of the structural, aggregation, and toxicity determinants in immunoglobulin light chain amyloidosis. We start by giving a brief introduction on amyloid assembly and the advantages of using simple and readily available techniques to study aggregation. After an overview on preparation of protein to set up parallel experiments, we provide a systematic description of the in vitro techniques used to study aggregation in AL protein. Additionally, we thoroughly discuss the steps needed in our experience during the individual experiments for better reproducibility and data analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148(6):1188–1203. https://doi.org/10.1016/j.cell.2012.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferrone F (1999) Analysis of protein aggregation kinetics. Methods Enzymol 309:256–274

    Article  CAS  PubMed  Google Scholar 

  3. Knowles TP, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15(6):384–396. https://doi.org/10.1038/nrm3810

    Article  CAS  PubMed  Google Scholar 

  4. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151(3):229–238. https://doi.org/10.1016/j.jsb.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  5. Wall J, Murphy CL, Solomon A (1999) In vitro immunoglobulin light chain fibrillogenesis. Methods Enzymol 309:204–217

    Article  CAS  PubMed  Google Scholar 

  6. Randles EG, Thompson JR, Martin DJ, Ramirez-Alvarado M (2009) Structural alterations within native amyloidogenic immunoglobulin light chains. J Mol Biol 389(1):199–210. https://doi.org/10.1016/j.jmb.2009.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baden EM, Owen BA, Peterson FC, Volkman BF, Ramirez-Alvarado M, Thompson JR (2008) Altered dimer interface decreases stability in an amyloidogenic protein. J Biol Chem 283(23):15853–15860. https://doi.org/10.1074/jbc.M705347200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DiCostanzo AC, Thompson JR, Peterson FC, Volkman BF, Ramirez-Alvarado M (2012) Tyrosine residues mediate fibril formation in a dynamic light chain dimer interface. J Biol Chem 287(33):27997–28006. https://doi.org/10.1074/jbc.M112.362921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blancas-Mejia LM, Tischer A, Thompson JR, Tai J, Wang L, Auton M, Ramirez-Alvarado M (2014) Kinetic control in protein folding for light chain amyloidosis and the differential effects of somatic mutations. J Mol Biol 426(2):347–361. https://doi.org/10.1016/j.jmb.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  10. Blancas-Mejia LM, Ramirez-Alvarado M (2016) Recruitment of light chains by homologous and heterologous fibrils shows distinctive kinetic and conformational specificity. Biochemistry 55(21):2967–2978. https://doi.org/10.1021/acs.biochem.6b00090

    Article  CAS  PubMed  Google Scholar 

  11. Sikkink LA, Ramirez-Alvarado M (2008) Salts enhance both protein stability and amyloid formation of an immunoglobulin light chain. Biophys Chem 135(1–3):25–31. https://doi.org/10.1016/j.bpc.2008.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nietzki R (1901) Chemie der organischen Farbstoffe, 4th edn. Springer, Berlin

    Book  Google Scholar 

  13. A palette of fluorescent thiophene-based ligands for the identification of protein aggregates. http://doi.wiley.com/10.1002/chem.201502999

  14. dye|World dye variety 2017. http://www.worlddyevariety.com/basic-dyes/basic-yellow-1.html

  15. Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804(7):1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vassar PS, Culling CF (1959) Fluorescent stains, with special reference to amyloid and connective tissues. Arch Pathol 68:487–498

    CAS  PubMed  Google Scholar 

  17. Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem 177(2):244–249

    Article  CAS  PubMed  Google Scholar 

  18. LeVine H 3rd (1993) Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2(3):404–410. https://doi.org/10.1002/pro.5560020312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. LeVine Iii H (1999) [18] quantification of β-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284. https://doi.org/10.1016/S0076-6879(99)09020-5 Academic Press

    Article  Google Scholar 

  20. Singh PK, Kumbhakar M, Pal H, Nath S (2010) Ultrafast bond twisting dynamics in amyloid fibril sensor. J Phys Chem B 114(7):2541–2546. https://doi.org/10.1021/jp911544r

    Article  CAS  PubMed  Google Scholar 

  21. Groenning M (2010) Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J Chem Biol 3(1):1–18. https://doi.org/10.1007/s12154-009-0027-5

    Article  PubMed  Google Scholar 

  22. Gade Malmos K, Blancas-Mejia LM, Weber B, Buchner J, Ramirez-Alvarado M, Naiki H, Otzen D (2017) ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid 24(1):1–16. https://doi.org/10.1080/13506129.2017.1304905

    Article  CAS  PubMed  Google Scholar 

  23. Malmos KG, Bjerring M, Jessen CM, Nielsen EH, Poulsen ET, Christiansen G, Vosegaard T, Skrydstrup T, Enghild JJ, Pedersen JS, Otzen DE (2016) How Glycosaminoglycans promote fibrillation of Salmon calcitonin. J Biol Chem 291(32):16849–16862. https://doi.org/10.1074/jbc.M116.715466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blancas-Mejia LM, Hammernik J, Marin-Argany M, Ramirez-Alvarado M (2015) Differential effects on light chain amyloid formation depend on mutations and type of glycosaminoglycans. J Biol Chem 290(8):4953–4965. https://doi.org/10.1074/jbc.M114.615401

    Article  CAS  PubMed  Google Scholar 

  25. Meisl G, Kirkegaard JB, Arosio P, Michaels TC, Vendruscolo M, Dobson CM, Linse S, Knowles TP (2016) Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat Protoc 11(2):252–272. https://doi.org/10.1038/nprot.2016.010

    Article  CAS  PubMed  Google Scholar 

  26. Arosio P, Michaels TC, Linse S, Mansson C, Emanuelsson C, Presto J, Johansson J, Vendruscolo M, Dobson CM, Knowles TP (2016) Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat Commun 7:10948. https://doi.org/10.1038/ncomms10948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Serpell LC, Sunde M, Benson MD, Tennent GA, Pepys MB, Fraser PE (2000) The protofilament substructure of amyloid fibrils. J Mol Biol 300(5):1033–1039. https://doi.org/10.1006/jmbi.2000.3908

    Article  CAS  PubMed  Google Scholar 

  28. Shirahama T, Cohen AS (1967) High-resolution electron microscopic analysis of the amyloid fibril. J Cell Biol 33(3):679–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fandrich M (2007) On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell Mol Life Sci 64(16):2066–2078. https://doi.org/10.1007/s00018-007-7110-2

    Article  CAS  PubMed  Google Scholar 

  30. O'Nuallain B, Thakur AK, Williams AD, Bhattacharyya AM, Chen S, Thiagarajan G, Wetzel R (2006) Kinetics and thermodynamics of amyloid assembly using a high-performance liquid chromatography-based sedimentation assay. Methods Enzymol 413:34–74. https://doi.org/10.1016/S0076-6879(06)13003-7

    Article  CAS  PubMed  Google Scholar 

  31. Lomakin A, Benedek GB, Teplow DB (1999) [27] monitoring protein assembly using quasielastic light scattering spectroscopy. Methods Enzymol 309:429–459. https://doi.org/10.1016/S0076-6879(99)09029-1

    Article  CAS  PubMed  Google Scholar 

  32. Wright M (2012) Nanoparticle tracking analysis for the multiparameter characterization and counting of nanoparticle suspensions. Methods Mol Biol 906:511–524. https://doi.org/10.1007/978-1-61779-953-2_41

    Article  CAS  PubMed  Google Scholar 

  33. (2017) High resolution sizing and concentration measurements of sub-visible protein aggregates using NTA. Technical note

    Google Scholar 

  34. Gross J, Sayle S, Karow AR, Bakowsky U, Garidel P (2016) Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: influence of experimental and data evaluation parameters. Eur J Pharm Biopharm 104:30–41. https://doi.org/10.1016/j.ejpb.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  35. Shi J, Guan J, Jiang B, Brenner DA, Del Monte F, Ward JE, Connors LH, Sawyer DB, Semigran MJ, Macgillivray TE, Seldin DC, Falk R, Liao R (2010) Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc Natl Acad Sci U S A 107(9):4188–4193. https://doi.org/10.1073/pnas.0912263107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sikkink LA, Ramirez-Alvarado M (2010) Cytotoxicity of amyloidogenic immunoglobulin light chains in cell culture. Cell Death Dis 1:e98. https://doi.org/10.1038/cddis.2010.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Migrino RQ, Truran S, Gutterman DD, Franco DA, Bright M, Schlundt B, Timmons M, Motta A, Phillips SA, Hari P (2011) Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins. Am J Physiol Heart Circ Physiol 301(6):H2305–H2312. https://doi.org/10.1152/ajpheart.00503.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi J, Guan J, Jiang B, Brenner DA, del Monte F, Ward JE, Connors LH, Sawyer DB, Semigran MJ, Macgillivray TE, Seldin DC, Falk R, Liao R (2010) Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38α MAPK pathway. Proc Natl Acad Sci U S A 107(9):4188–4193. https://doi.org/10.1073/pnas.0912263107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mishra S, Guan J, Plovie E, Seldin DC, Connors LH, Merlini G, Falk RH, MacRae CA, Liao R (2013) Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish. Am J Physiol Heart Circ Physiol 305(1):H95–H103. https://doi.org/10.1152/ajpheart.00186.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marin-Argany M, Lin Y, Misra P, Williams A, Wall JS, Howell KG, Elsbernd LR, McClure M, Ramirez-Alvarado M (2016) Cell damage in light chain amyloidosis: fibril internalization, toxicity and cell-mediated seeding. J Biol Chem 291(38):19813–19825. https://doi.org/10.1074/jbc.M116.736736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Allen RT, Hunter WJ, Agrawal DK (1997) Morphological and biochemical characterization and analysis of apoptosis. J Pharmacol Toxicol Methods 37(4):215–228. https://doi.org/10.1016/S1056-8719(97)00033-6

    Article  CAS  PubMed  Google Scholar 

  43. Gurtu V, Kain SR, Zhang G (1997) Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem 251(1):98–102. https://doi.org/10.1006/abio.1997.2220

    Article  CAS  PubMed  Google Scholar 

  44. Gavrieli Y, Sherman Y, Ben-Sasson S (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501

    Article  CAS  PubMed  Google Scholar 

  45. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84(5):1415–1420

    CAS  PubMed  Google Scholar 

  46. Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306. https://doi.org/10.1016/S0074-7696(08)62312-8

    Article  CAS  PubMed  Google Scholar 

  47. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53(17):3976–3985

    CAS  PubMed  Google Scholar 

  48. Spence IJMTZ (2010) Molecular probes handbook: a guide to fluorescent probes and labeling technologies. 11th edn. Invitrogen

    Google Scholar 

  49. abcam Thioflavin T (ab120751) Product datasheet. http://www.abcam.com/thioflavin-t-ab120751.html. Accessed 16 Dec 2016

  50. Kroes-Nijboer A, Lubbersen YS, Venema P, van der Linden E (2009) Thioflavin T fluorescence assay for beta-lactoglobulin fibrils hindered by DAPH. J Struct Biol 165(3):140–145. https://doi.org/10.1016/j.jsb.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  51. Tinari A, Giammarioli AM, Manganelli V, Ciarlo L, Malorni W (2008) Chapter one analyzing morphological and ultrastructural features in cell death. Methods Enzymol 442:1–26. https://doi.org/10.1016/S0076-6879(08)01401-8 Academic Press

    Article  PubMed  Google Scholar 

  52. Latt SA, Stetten G (1976) Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J Histochem Cytochem 24(1):24–33. https://doi.org/10.1177/24.1.943439

    Article  CAS  PubMed  Google Scholar 

  53. Hackl EV, Darkwah J, Smith G, Ermolina I (2015) Effect of acidic and basic pH on Thioflavin T absorbance and fluorescence. Eur Biophys J 44(4):249–261. https://doi.org/10.1007/s00249-015-1019-8

    Article  CAS  PubMed  Google Scholar 

  54. Fodera V, Groenning M, Vetri V, Librizzi F, Spagnolo S, Cornett C, Olsen L, van de Weert M, Leone M (2008) Thioflavin T hydroxylation at basic pH and its effect on amyloid fibril detection. J Phys Chem B 112(47):15174–15181. https://doi.org/10.1021/jp805560c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The methods described in this chapter have been published for the most part in research articles, supported by the National Institutes of Health (R01 GM 071514), the Mayo Foundation, the Seidler Professorship and Dr. Morie Gertz, and the generous donations of amyloidosis patients and their families. Luis M. Blancas-Mejia and Pinaki Misra contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Ramirez-Alvarado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Blancas-Mejia, L.M. et al. (2019). Assays for Light Chain Amyloidosis Formation and Cytotoxicity. In: Gomes, C. (eds) Protein Misfolding Diseases. Methods in Molecular Biology, vol 1873. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8820-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8820-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8819-8

  • Online ISBN: 978-1-4939-8820-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics