Skip to main content

EPH Profiling of BTIC Populations in Glioblastoma Multiforme Using CyTOF

  • Protocol
  • First Online:
Brain Tumor Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1869))

Abstract

The ability to elucidate the phenotype of brain tumor initiating cell (BTIC) in the context of bulk tumor in glioblastoma multiforme (GBM) provides significant therapeutic benefits for therapeutic evaluation. For the identification of such an elusive and rare subpopulation of cells, a single cell analysis technology with deep profiling capabilities known as Mass Cytometry (CyTOF) can prove to be highly useful. CyTOF circumvents the spectral overlap limitations of traditional flow cytometry by replacing fluorophores with metal isotope tags, allowing the accurate detection of significantly more parameters at the same time. In this chapter, we demonstrate that synthetic antibodies can be conjugated with metal isotope tags for CyTOF analysis, resulting in the development of a highly tailored, custom multi-parameter panel. This toolset was used to stain patient-derived GBM cells, which was analyzed via CyTOF. Analysis software viSNE and SPADE were applied to study the co-expression patterns of the Eph Receptor (EphR) family and several putative BTIC markers in GBM, resulting in the identification of a distinct group of cells consistent with a BTIC subpopulation. This approach can be readily adapted to the detection of cancer stem-like cells in other cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  CAS  PubMed  Google Scholar 

  2. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumor-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8(10):806–823

    Article  CAS  PubMed  Google Scholar 

  3. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317(5836):337

    Article  CAS  PubMed  Google Scholar 

  4. Yoo MH, Hatfield DL (2008) The cancer stem cell theory: is it correct? Mol Cells 26(5):514

    CAS  PubMed  Google Scholar 

  5. Rahman M, Deleyrolle L, Vedam-Mai V, Azari H, Abd-El-Barr M, Reynolds BA (2011) The cancer stem cell hypothesis: failures and pitfalls. Neurosurgery 68(2):531–545

    Article  PubMed  Google Scholar 

  6. Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH (2013) Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol:14–25

    Google Scholar 

  7. Neuzil J, Stantic M, Zobalova R, Chladova J, Wang X, Prochazka L, Dong L, Andera L, Ralph SJ (2007) Tumour-initiating cells vs. cancer ‘stem’cells and CD133: what’s in the name? Biochem Biophys Res Commun 355(4):855–859

    Article  CAS  PubMed  Google Scholar 

  8. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66(4):1883–1890

    Article  CAS  PubMed  Google Scholar 

  9. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15(9):1010–1012

    Article  CAS  PubMed  Google Scholar 

  10. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. https://doi.org/10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  11. Chen J, Li Y, Yu TS et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526. https://doi.org/10.1038/nature11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67. https://doi.org/10.1186/1476-4598-5-67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mao X, Zhang X, Xue X et al (2009) Brain tumor stem-like cells identified by neural stem cell marker CD15. Transl Oncol 2(4):247–257

    Article  PubMed  PubMed Central  Google Scholar 

  14. Abdouh M, Facchino S, Chatoo W et al (2009) BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci 29(28):8884–8896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Binda E, Visioli A, Giani F et al (2012) The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell 22:765–780. https://doi.org/10.1016/j.ccr.2012.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Day BW, Stringer BW, Al-Ejeh F et al (2013) EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell 23:238–248. https://doi.org/10.1016/j.ccr.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  17. Day BW, Stringer BW, Boyd AW (2014) Eph receptors as therapeutic targets in glioblastoma. Br J Cancer 111:1255–1261. https://doi.org/10.1038/bjc.2014.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10(3):165–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu-Emerson C, Norden AD, Drappatz J, Quant EC, Beroukhim R, Ciampa AS, Doherty LM, Lafrankie DC, Ruland S, Wen PY (2011) Retrospective study of dasatinib for recurrent glioblastoma after bevacizumab failure. J Neuro-Oncol 104(1):287–291

    Article  CAS  Google Scholar 

  20. Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK (2012) A deep profiler’s guide to cytometry. Trends Immunol 33(7):323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bandura DR, Baranov VI, Ornatsky OI et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822

    Article  CAS  PubMed  Google Scholar 

  22. Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fellouse F, Esaki K, Birtalan S et al (2007) High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol 373(4):924–940

    Article  CAS  PubMed  Google Scholar 

  24. Miersch S, Sidhu SS (2012) Synthetic antibodies: concepts, potential and practical considerations. Methods 57(4):486–498

    Article  CAS  PubMed  Google Scholar 

  25. Amir EAD, Davis KL, Tadmor MD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552

    Article  CAS  PubMed Central  Google Scholar 

  26. Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, MacSwords J, Wu Q, Vasanji A, McLendon RE, Hjelmeland AB, Rich JN (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6(5):421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, Ravetti GL, Zona GL, Daga A, Corte G (2009) SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27(1):40–48

    Article  CAS  PubMed  Google Scholar 

  28. Verginelli F, Perin A, Dali R et al (2013) Transcription factors FOXG1 and Groucho/TLE promote glioblastoma growth. Nat Commun 4

    Google Scholar 

  29. Günther HS, Schmidt NO, Phillips HS et al (2008) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27(20):2897–2909

    Article  PubMed  Google Scholar 

  30. Qiu P, Simonds EF, Bendall SC et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fluidigm Corporation (2014) Maxpar panel designer. https://www.fluidigm.com/binaries/content/documents/fluidigm/search/hippo:resultset/maxpar-panel-designer/fluidigm:file

  32. Fluidigm Corporation (2015) Maxpar antibody labeling kit PRD002 Version 8. https://www.fluidigm.com/binaries/content/documents/fluidigm/resources/maxpar-antibody-labeling-kit-pr-prd002/maxpar-antibody-labeling-kit-pr-prd002/fluidigm:file. Accessed 20 May 2017

  33. Finck R, Simonds EF, Jager A et al (2013) Normalization of mass cytometry data with bead standards. Cytometry A 83(5):483–494

    Article  PubMed  PubMed Central  Google Scholar 

  34. ThermoFisher Scientific (n.d.) Passive adsorption protocol. https://www.thermofisher.com/ca/en/home/life-science/cell-analysis/qdots-microspheres-nanospheres/idc-surfactant-free-latex-beads/latex-bead-protein-coupling-protocols/passive-adsorption-protocol.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy X. Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hu, A.X. et al. (2019). EPH Profiling of BTIC Populations in Glioblastoma Multiforme Using CyTOF. In: Singh, S., Venugopal, C. (eds) Brain Tumor Stem Cells. Methods in Molecular Biology, vol 1869. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8805-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8805-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8804-4

  • Online ISBN: 978-1-4939-8805-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics