Skip to main content

Dye Electroporation and Imaging of Calcium Signaling in Xenopus Nervous System

  • Protocol
  • First Online:
Xenopus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1865))

Abstract

Electroporation is an efficient method of transferring charged macromolecules into living cells in order to study their morphology, function, and connectivity within neuronal networks. Labeling cells with fluorophore-coupled macromolecules can be used to trace projections of whole neuronal ensembles, as well as the fine morphology of single cells. Here, we present a protocol to visualize pre- and postsynaptic components of a sensory relay synapse in the brain, using the olfactory system of Xenopus laevis tadpoles as a model. We apply bulk electroporation to trace projections of receptor neurons from the nose to the brain, and single cell electroporation to visualize the morphology of their synaptic target cells, the mitral-tufted cells. Labeling the receptor neurons with a calcium-sensitive dye allows us to record stimulus-induced presynaptic input to the dendrites of the postsynaptic cells via functional calcium imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haas K, Sin WC, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29(3):583–591

    Article  CAS  Google Scholar 

  2. Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44(1–2):5–14

    Article  CAS  Google Scholar 

  3. Ho SY, Mittal GS (1996) Electroporation of cell membranes: a review. Crit Rev Biotechnol 16(4):349–362

    Article  CAS  Google Scholar 

  4. Neumann E, Kakorin S, Tœnsing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48(1):3–16

    Article  CAS  Google Scholar 

  5. Falk J, Drinjakovic J, Leung KM, Dwivedy A, Regan AG, Piper M, Holt CE (2007) Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus. BMC Dev Biol 7(107):1–16

    Google Scholar 

  6. Miyasaka N, Arimatsu Y, Takiguchihayashi K (1999) Foreign gene expression in an organotypic culture of cortical anlage after in vivo electroporation. Neuroreport 10(11):2319–2323

    Article  CAS  Google Scholar 

  7. Araki I, Nakamura H (1999) Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fate. Development 126(22):5127–5135

    CAS  PubMed  Google Scholar 

  8. De Vry J, Martínez-Martínez P, Losen M, Temela Y, Steckler T, Steinbusch HWM, De Baets MH, Prickaerts J (2010) In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog Neurobiol 92(3):227–244

    Article  Google Scholar 

  9. Haas K, Jensen K, Sin WC, Foa L, Cline HT (2002) Targeted electroporation in Xenopus tadpoles in vivo – from single cells to the entire brain. Differentiation 70(4–5):148–154

    Article  CAS  Google Scholar 

  10. Hovis KR, Padmanabhan K, Urban NN (2010) A simple method of in vitro electroporation allows visualization, recording, and calcium imaging of local neuronal circuits. J Neurosci Methods 191(1):1–10

    Article  CAS  Google Scholar 

  11. Bestman JE, Ewald RC, Chiu S-L, Cline HT (2006) In vivo single-cell electroporation for transfer of DNA and macromolecules. Nat Protoc 1(3):1267–1272

    Article  Google Scholar 

  12. Cline H, Haas K (2008) The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis. J Physiol 586(6):1509–1517

    Article  CAS  Google Scholar 

  13. Hewapathirane DS, Haas K (2008) Single cell electroporation in vivo within the intact developing brain. J Vis Exp 17:e705

    Google Scholar 

  14. Hassenklöver T, Manzini I (2014) The olfactory system as a model to study axonal growth patterns and morphology in vivo. J Vis Exp 92:e52143

    Google Scholar 

  15. Kassing V, Engelmann J, Kurtz R (2013) Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation. PLoS One 8(5):1–10

    Article  Google Scholar 

  16. Gliem S, Syed AS, Sansone A, Kludt E, Tantalaki E, Hassenklöver T, Korsching SI, Manzini I (2013) Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream. Cell Mol Life Sci 70(11):1965–1984

    Article  CAS  Google Scholar 

  17. Hassenklöver T, Manzini I (2013) Olfactory wiring logic in amphibians challenges the basic assumptions of the unbranched axon concept. J Neurosci 33(44):17247–17252

    Article  Google Scholar 

  18. Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (daudin). Garland Publishing Inc, New York, NY

    Google Scholar 

  19. Caprio J, Byrd RP (1984) Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory sites in the catfish. J Gen Physiol 84:403–422

    Article  CAS  Google Scholar 

  20. Manzini I, Schild D (2004) Classes and narrowing selectivity of olfactory receptor neurons of Xenopus laevis tadpoles. J Gen Physiol 123:9–107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Manzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weiss, L., Offner, T., Hassenklöver, T., Manzini, I. (2018). Dye Electroporation and Imaging of Calcium Signaling in Xenopus Nervous System. In: Vleminckx, K. (eds) Xenopus. Methods in Molecular Biology, vol 1865. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8784-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8784-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8783-2

  • Online ISBN: 978-1-4939-8784-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics