Skip to main content

Recombinant Expression, Unnatural Amino Acid Incorporation, and Site-Specific Labeling of 26S Proteasomal Subcomplexes

  • Protocol
  • First Online:
The Ubiquitin Proteasome System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1844))

Abstract

The 26S proteasome is the major regulated protease in eukaryotes and is responsible for degrading ubiquitinated substrates. It consists of a barrel-shaped 20S core peptidase and one or two 19S regulatory particles, which recognize, unfold, and translocate substrates into the core. The regulatory particle can be further divided into two multi-subunit complexes: the base and the lid. Here we present protocols for expressing the Saccharomyces cerevisiae base and lid recombinantly in Escherichia coli and purifying the assembled subcomplexes using a tandem affinity purification method. The purified complexes can then be reconstituted with 20S core to form fully functional proteasomes. Furthermore, we describe a method for incorporating the unnatural amino acid p-azido-l-phenylalanine into the recombinant complexes at any residue position, allowing for non-disruptive site-specific modifications of these large assemblies. The use of recombinant proteins allows for complete mutational control over the proteasome regulatory particle, enabling detailed studies of the mechanism by which the proteasome processes its substrates. The ability to then specifically modify residues in the regulatory particle opens the door to a wide range of previously impossible biochemical and biophysical studies. The techniques described below for incorporating unnatural amino acids into the proteasomal subcomplexes should be widely transferable to other recombinant proteins, whether individually purified or in larger multi-subunit assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78(1):477–513. https://doi.org/10.1146/annurev.biochem.78.081507.101607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldberg AL (2007) Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35(Pt 1):12–17. https://doi.org/10.1042/BST0350012

    Article  CAS  PubMed  Google Scholar 

  3. Suraweera A, Munch C, Hanssum A, Bertolotti A (2012) Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol Cell 48(2):242–253. https://doi.org/10.1016/j.molcel.2012.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Glickman MH, Rubin DM, Fried VA, Finley D (1998) The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol 18(6):3149–3162

    Article  CAS  Google Scholar 

  5. Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7(11):1062–1067. https://doi.org/10.1038/80992

    Article  CAS  PubMed  Google Scholar 

  6. Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30(3):360–368. https://doi.org/10.1016/j.molcel.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94(5):615–623

    Article  CAS  Google Scholar 

  8. Saeki Y, Tanaka K (2012) Assembly and function of the proteasome. Methods Mol Biol 832:315–337. https://doi.org/10.1007/978-1-61779-474-2_22

    Article  CAS  PubMed  Google Scholar 

  9. Budenholzer L, Cheng CL, Li Y, Hochstrasser M (2017) Proteasome structure and assembly. J Mol Biol 429(22):3500–3524. https://doi.org/10.1016/j.jmb.2017.05.027

    Article  CAS  PubMed  Google Scholar 

  10. Shi Y, Chen X, Elsasser S, Stocks BB, Tian G, Lee BH, Shi Y, Zhang N, de Poot SA, Tuebing F, Sun S, Vannoy J, Tarasov SG, Engen JR, Finley D, Walters KJ (2016) Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 351(6275):aad9421. https://doi.org/10.1126/science.aad9421

    Article  CAS  PubMed  Google Scholar 

  11. Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453(7194):481–488. https://doi.org/10.1038/nature06926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomko RJ Jr, Funakoshi M, Schneider K, Wang J, Hochstrasser M (2010) Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell 38(3):393–403. https://doi.org/10.1016/j.molcel.2010.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saeki Y, Toh EA, Kudo T, Kawamura H, Tanaka K (2009) Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137(5):900–913. https://doi.org/10.1016/j.cell.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  14. Funakoshi M, Tomko RJ Jr, Kobayashi H, Hochstrasser M (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137(5):887–899. https://doi.org/10.1016/j.cell.2009.04.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roelofs J, Park S, Haas W, Tian G, McAllister FE, Huo Y, Lee BH, Zhang F, Shi Y, Gygi SP, Finley D (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459(7248):861–865. https://doi.org/10.1038/nature08063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park S, Li X, Kim HM, Singh CR, Tian G, Hoyt MA, Lovell S, Battaile KP, Zolkiewski M, Coffino P, Roelofs J, Cheng Y, Finley D (2013) Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 497(7450):512–516. https://doi.org/10.1038/nature12123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593):611–615. https://doi.org/10.1126/science.1075898

    Article  CAS  PubMed  Google Scholar 

  18. Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419(6905):403–407. https://doi.org/10.1038/nature01071

    Article  CAS  PubMed  Google Scholar 

  19. Tomko RJ Jr, Hochstrasser M (2011) Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol Cell 44(6):907–917. https://doi.org/10.1016/j.molcel.2011.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Estrin E, Lopez-Blanco JR, Chacon P, Martin A (2013) Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 21(9):1624–1635. https://doi.org/10.1016/j.str.2013.06.023

    Article  CAS  PubMed  Google Scholar 

  21. Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG (2002) Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124(31):9026–9027

    Article  CAS  Google Scholar 

  22. Chin JW, Martin AB, King DS, Wang L, Schultz PG (2002) Addition of a photocrosslinking amino acid to the genetic code of Escherichiacoli. Proc Natl Acad Sci U S A 99(17):11020–11024. https://doi.org/10.1073/pnas.172226299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen PR, Groff D, Guo J, Ou W, Cellitti S, Geierstanger BH, Schultz PG (2009) A facile system for encoding unnatural amino acids in mammalian cells. Angew Chem 48(22):4052–4055. https://doi.org/10.1002/anie.200900683

    Article  CAS  Google Scholar 

  24. Amiram M, Haimovich AD, Fan C, Wang YS, Aerni HR, Ntai I, Moonan DW, Ma NJ, Rovner AJ, Hong SH, Kelleher NL, Goodman AL, Jewett MC, Soll D, Rinehart J, Isaacs FJ (2015) Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat Biotechnol 33(12):1272–1279. https://doi.org/10.1038/nbt.3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chatterjee A, Sun SB, Furman JL, Xiao H, Schultz PG (2013) A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 52(10):1828–1837. https://doi.org/10.1021/bi4000244

    Article  CAS  PubMed  Google Scholar 

  26. Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126(46):15046–15047. https://doi.org/10.1021/ja044996f

    Article  CAS  PubMed  Google Scholar 

  27. Ning X, Guo J, Wolfert MA, Boons GJ (2008) Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angew Chem 47(12):2253–2255. https://doi.org/10.1002/anie.200705456

    Article  CAS  Google Scholar 

  28. van Geel R, Pruijn GJ, van Delft FL, Boelens WC (2012) Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition. Bioconjug Chem 23(3):392–398. https://doi.org/10.1021/bc200365k

    Article  CAS  PubMed  Google Scholar 

  29. Seidman CE, Struhl K, Sheen J, Jessen T (2001) Introduction of plasmid DNA into cells. Curr Protoc Mol Biol Chapter 1:Unit1 8. https://doi.org/10.1002/0471142727.mb0108s37

    Article  PubMed  Google Scholar 

  30. Schinn SM, Bradley W, Groesbeck A, Wu JC, Broadbent A, Bundy BC (2017) Rapid in vitro screening for the location-dependent effects of unnatural amino acids on protein expression and activity. Biotechnol Bioeng 114(10):2412–2417. https://doi.org/10.1002/bit.26305

    Article  CAS  PubMed  Google Scholar 

  31. Tian H, Sakmar TP, Huber T (2016) A simple method for enhancing the bioorthogonality of cyclooctyne reagent. Chem Commun 52(31):5451–5454. https://doi.org/10.1039/c6cc01321j

    Article  CAS  Google Scholar 

  32. Beckwith R, Estrin E, Worden EJ, Martin A (2013) Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat Struct Mol Biol 20(10):1164–1172. https://doi.org/10.1038/nsmb.2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384):186–191. https://doi.org/10.1038/nature10774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the members of the Martin Lab for helpful discussions and the Prof. P. Schulz Lab at the Scripps Research Institute as well as the Prof. F. Isaacs Lab at Yale University for providing plasmid constructs for unnatural amino acid incorporation. J.A.M.B. acknowledges support from the NSF Graduate Research Fellowship. This research was funded in part by the US National Institutes of Health (R01-GM094497 to A.M.), the US National Science Foundation CAREER Program (NSF-MCB-1150288 to A.M.), and the Howard Hughes Medical Institute (A.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bard, J.A.M., Martin, A. (2018). Recombinant Expression, Unnatural Amino Acid Incorporation, and Site-Specific Labeling of 26S Proteasomal Subcomplexes. In: Mayor, T., Kleiger, G. (eds) The Ubiquitin Proteasome System. Methods in Molecular Biology, vol 1844. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8706-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8706-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8705-4

  • Online ISBN: 978-1-4939-8706-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics