Skip to main content

Cell-Specific Markers for the Identification of Retinal Cells and Subcellular Organelles by Immunofluorescence Microscopy

  • Protocol
Retinal Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1834))

Abstract

Identification of specific cells and subcellular structures in the retina is fundamental for understanding the visual process, retinal development, disease progression, and therapeutic intervention. The increased use of knockout, transgenic, and naturally occurring mutant mice has further underlined the need for retinal cell-specific imaging. Immunofluorescence microscopy of retinal cryosections and whole-mount tissue labeled with cell-specific markers has emerged as the method of choice for identifying and quantifying specific cell populations and mapping their distribution within the retina. Immunofluorescence microscopy has also been important in localizing proteins to specific compartments of retinal cells. In most cases indirect labeling methods are employed in which lightly fixed retinal samples are first labeled with a primary antibody targeted against a cell-specific protein of interest and then labeled with a fluorescent dye-tagged secondary antibody that recognizes the primary antibody. The localization and relative abundance of the protein can be readily imaged under a conventional fluorescent or confocal scanning microscope. Immunofluorescence labeling can be adapted for imaging more than one antigen through the use of multiple antibodies and different, non-overlapping fluorescent dyes. A number of well-characterized immunochemical markers are now available for detecting photoreceptors, bipolar cells, amacrine cells, horizontal cells, Müller cells, and retinal pigment epithelial cells in the retina of mice and other mammals. Immunochemical markers are also available for visualizing the distribution of specific proteins within cells with most studies directed toward photoreceptor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeon C-J, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946

    Article  CAS  Google Scholar 

  2. Applebury ML et al (2000) The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27:513–523

    Article  CAS  Google Scholar 

  3. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292:497–523

    Article  CAS  Google Scholar 

  4. Szél Á et al (1992) Unique topographic separation of two spectral classes of cones in the mouse retina. J Comp Neurol 325:327–342

    Article  Google Scholar 

  5. Peichl L, González-Soriano J (1994) Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 11:501–517

    Article  CAS  Google Scholar 

  6. Euler T, Wässle H (1995) Immunocytochemical identification of cone bipolar cells in the rat retina. J Comp Neurol 361:461–478

    Article  CAS  Google Scholar 

  7. Haverkamp S, Wässle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424:1–23

    Article  CAS  Google Scholar 

  8. MacNeil MA, Masland RH (1998) Extreme diversity among amacrine cells: implications for function. Neuron 20:971–982

    Article  CAS  Google Scholar 

  9. Dräger UC, Olsen JF (1981) Ganglion cell distribution in the retina of the mouse. Invest Ophthalmol Vis Sci 20:285–293

    PubMed  Google Scholar 

  10. Molday LL, Rabin AR, Molday RS (2000) ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat Genet 25:257–258

    Article  CAS  Google Scholar 

  11. Bonilha VL, Finnemann SC, Rodriguez-Boulan E (1999) Ezrin promotes morphogenesis of apical microvilli and basal Infoldings in retinal pigment epithelium. J Cell Biol 147:1533–1547

    Article  CAS  Google Scholar 

  12. Molday RS, MacKenzie D (1983) Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry 22:653–660

    Article  CAS  Google Scholar 

  13. MacKenzie D, Arendt A, Hargrave P, McDowell JH, Molday RS (1984) Localization of the binding sites for carboxyl-terminal specific anti-rhodopsin monoclonal antibodies using synthetic peptides. Biochemistry 23:6544–6549

    Article  CAS  Google Scholar 

  14. Komaromy AM et al (2008) Targeting gene expression to cones with human cone opsin promoters in recombinant AAV. Gene Ther 15:1049–1055

    Article  CAS  Google Scholar 

  15. Roberts MR, Hendrickson A, McGuire CR, Reh TA (2005) Retinoid X receptor γ is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina. Invest Ophthalmol Vis Sci 46:2897–2904

    Article  Google Scholar 

  16. Molday LL, Djajadi H, Yan P, Szczygiel L, Boye SL, Chiodo VA, Gregory-Evans K, Sarunic MV, Hauswirth WW, Molday RS (2013) RD3 gene delivery restores guanylate cyclase localization and rescues photoreceptors in the Rd3 mouse model of leber congenital amaurosis 12. Hum Mol Genet 22:3894–3905

    Article  CAS  Google Scholar 

  17. Koulen P, Fletcher EL, Craven SE, Bredt DS, Wässle H (1998) Immunocytochemical localization of the postsynaptic density protein PSD-95 in the mammalian retina. J Neurosci 18:10136–10149

    Article  CAS  Google Scholar 

  18. Hendrickson A, Troilo D, Djajadi H, Possin D, Springer A (2009) Expression of synaptic and phototransduction markers during photoreceptor development in the marmoset monkey Callithrix jacchus. J Comp Neurol 512:218–231

    Article  CAS  Google Scholar 

  19. Greferath U, Grünert U, Wässle H (1990) Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol 301:433–442

    Article  CAS  Google Scholar 

  20. Haverkamp S, Ghosh KK, Hirano AA, Wässle H (2003) Immunocytochemical description of five bipolar cell types of the mouse retina. J Comp Neurol 455:463–476

    Article  Google Scholar 

  21. Pow DV, Barnett NL (2000) Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett 280:21–24

    Article  CAS  Google Scholar 

  22. Dyer MA, Cepko CL (2001) The p57Kip2 cyclin kinase inhibitor is expressed by a restricted set of amacrine cells in the rodent retina. J Comp Neurol 429:601–614

    Article  CAS  Google Scholar 

  23. Bunt-Milam AH, Saari JC (1983) Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J Cell Biol 97:703–712

    Article  CAS  Google Scholar 

  24. Poetsch A, Molday LL, Molday RS (2001) The cGMP-gated channel and related glutamic acid rich proteins interact with Peripherin-2 at the rim region of rod photoreceptor disc membranes. J Biol Chem 276:48009–48016

    Article  CAS  Google Scholar 

  25. Zhang Y, Molday LL, Molday RS, Sarfare SS, Woodruff ML, Fain GL, Kraft TW, Pittler SJ (2009) Knockout of cGMP-gated channel β-subunit and GARPs disrupts disk morphogenesis and rod outer segment structural integrity. J Cell Sci 122:1192–1200

    Article  CAS  Google Scholar 

  26. Liu Q, Zuo J, Pierce EA (2004) The retinitis Pigmentosa 1 protein is a photoreceptor microtubule-associated protein. J Neurosci 24:6427–6436

    Article  CAS  Google Scholar 

  27. Blackmon SM et al (2000) Early loss of synaptic protein PSD-95 from rod terminals of rhodopsin P347L transgenic porcine retina. Brain Res 885:53–61

    Article  CAS  Google Scholar 

  28. Wässle H, Peichl L, Airaksinen MS, Meyer M (1998) Calcium-binding proteins in the retina of a calbindin-null mutant mouse. Cell Tissue Res 292:211–218

    Article  Google Scholar 

  29. Voigt T (1986) Cholinergic amacrine cells in the rat retina. J Comp Neurol 248:19–35

    Article  CAS  Google Scholar 

  30. Barnstable CJ, Dräger UC (1984) Thy-1 antigen: a ganglion cell specific marker in rodent retina. Neuroscience 11:847–855

    Article  CAS  Google Scholar 

  31. Raymond ID, Vila A, Huynh U-CN, Brecha NC (2008) Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina. Mol Vis 14:1559–1574

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dräger UC (1983) Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina. Nature 303:169–172

    Article  Google Scholar 

  33. Ivanova E, Toychiev AH, Yee CW, Sagdullaev BT (2013) Optimized protocol for retinal wholemount preparation for imaging and immunohistochemistry. J Vis Exp 13(82):e51018

    Google Scholar 

  34. Nair KS et al (2005) Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions. Neuron 46:555–567

    Article  CAS  Google Scholar 

  35. Strissel KJ et al (2005) Recoverin undergoes light-dependent intracellular translocation in rod photoreceptors. J Biol Chem 280:29250–29255

    Article  CAS  Google Scholar 

  36. Sokolov M et al (2002) Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Neuron 34:95–106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eric Pierce and Dr. John Saari for polyclonal antibodies to RP1 and CRALBP, respectively. This work was supported by the National Institutes of Health [EY002422] and Canadian Institutes of Health Research [PJT-148649] to RSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Molday .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Molday, L.L., Cheng, C.L., Molday, R.S. (2019). Cell-Specific Markers for the Identification of Retinal Cells and Subcellular Organelles by Immunofluorescence Microscopy. In: Weber, B.H.F., Langmann, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 1834. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8669-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8669-9_19

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8668-2

  • Online ISBN: 978-1-4939-8669-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics