Skip to main content

The Main Functions of Plastids

  • Protocol
  • First Online:
Plastids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1829))

Abstract

Plastids are semiautonomous organelles like mitochondria, and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimorski V, Ku C, Martin WF et al (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48

    Article  CAS  PubMed  Google Scholar 

  2. Bogorad L (2008) Evolution of early eukaryotic cells: genomes, proteomes, and compartments. Photosynth Res 95:11–21

    Article  CAS  PubMed  Google Scholar 

  3. Reyes-Prieto A, Weber AP, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    Article  CAS  PubMed  Google Scholar 

  4. Yoon HS, Hackett JD, Ciniglia C et al (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  CAS  PubMed  Google Scholar 

  5. Jarvis P, López-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802

    Article  CAS  PubMed  Google Scholar 

  6. Lee DW, Lee J, Hwang I (2017) Sorting of nuclear-encoded chloroplast membrane proteins. Curr Opin Plant Biol 40:1–7

    Article  CAS  PubMed  Google Scholar 

  7. Inaba T, Ito-Inaba Y (2010) Versatile roles of plastids in plant growth and development. Plant Cell Physiol 51:1847–1853

    Article  CAS  PubMed  Google Scholar 

  8. Sato EM, Hijazi H, Bennett MJ et al (2015) New insights into root gravitropic signaling. J Exp Bot 66(8):2155–2165

    Article  CAS  PubMed  Google Scholar 

  9. Block MA, Douce R, Joyard J et al (2007) Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. Photosynth Res 92:225–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rolland N, Curien G, Finazzi G et al (2012) The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes. Annu Rev Genet 46:233–264

    Article  CAS  PubMed  Google Scholar 

  11. Agrawal GK, Bourguignon J, Rolland N et al (2011) Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom Rev 30(5):772–853

    PubMed  CAS  Google Scholar 

  12. Kleffmann T, Hirsch-Hoffmann M, Gruissem W et al (2006) Plprot: a comprehensive proteome database for different plastid types. Plant Cell Physiol 47(3):432–436

    Article  CAS  PubMed  Google Scholar 

  13. Sun Q, Zybailov B, Majeran W et al (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37(Database issue):D969–D974

    Article  CAS  PubMed  Google Scholar 

  14. Heazlewood JL, Verboom RE, Tonti-Filippini J et al (2007) SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 35(Database issue):D213–D218

    Article  CAS  PubMed  Google Scholar 

  15. Tanz SK, Castleden I, Hooper CM et al (2013) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res 41:1185–1191

    Article  CAS  Google Scholar 

  16. Hooper CM, Castleden IR, Tanz SK et al (2017) SUBA4: the interactive data analysis Centre for Arabidopsis subcellular protein locations. Nucleic Acids Res 45(D1):D1064–D1074

    Article  CAS  PubMed  Google Scholar 

  17. Ferro M, Brugière S, Salvi D et al (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9(6):1063–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bruley C, Dupierris V, Salvi D et al (2012) AT_CHLORO: a chloroplast protein database dedicated to sub-Plastidial localization. Front Plant Sci 3:205

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tomizioli M, Lazar C, Brugière S et al (2014) Deciphering thylakoid sub-compartments using a mass spectrometry-based approach. Mol Cell Proteomics 13(8):2147–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Joshi HJ, Hirsch-Hoffmann M, Baerenfaller K et al (2011) MASCP gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155(1):259–270

    Article  CAS  PubMed  Google Scholar 

  21. Raven JA (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth Res 106:123–134

    Article  CAS  PubMed  Google Scholar 

  22. Rolland N, Dorne A-J, Amoroso G et al (1997) Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of Chlamydomonas. EMBO J 16:6713–6726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uehlein N, Otto B, Hanson DT et al (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Flügge UI, Fischer K, Gross A et al (1989) The triose phosphate-3-phosphoglyceratephosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J 8:39–46

    Article  PubMed  PubMed Central  Google Scholar 

  25. Niittylä T, Messerli G, Trevisan M et al (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303:87–89

    Article  CAS  PubMed  Google Scholar 

  26. Facchinelli F, Weber AP (2011) The metabolite transporters of the plastid envelope: an update. Front Plant Sci 2:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weber APM, Schwacke R, Flugge UI (2005) Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol 56:133–164

    Article  CAS  PubMed  Google Scholar 

  28. Oh YJ, Hwang I (2015) Targeting and biogenesis of transporters and channels in chloroplast envelope membranes: unsolved questions. Cell Calcium 58(1):122–130

    Article  CAS  PubMed  Google Scholar 

  29. Renne P, Dressen U, Hebbeker U et al (2003) The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2. Plant J 35:316–331

    Article  CAS  PubMed  Google Scholar 

  30. Joyard J, Ferro M, Masselon C et al (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2:1154–1180

    Article  CAS  PubMed  Google Scholar 

  31. Sun T, Yuan H, Cao H et al (2017) Carotenoid metabolism in plants: the role of plastids. Mol Plant (in press). https://doi.org/10.1016/j.molp.2017.09.010

  32. Siddiqi KS, Husen A (2017) Plant response to strigolactones: current developments and emerging trends. Appl Soil Ecol 120:247–253

    Article  Google Scholar 

  33. Brown AP, Slabas AR, Rafferty JB (2010) Fatty acid biosynthesis in plants - metabolic pathways, structure and organization. In: Wada H, Murata N (eds) Lipids in photosynthesis. Springer, Dordrecht, pp 11–34

    Google Scholar 

  34. Jouhet J, Dubots E, Maréchal E et al (2010) Lipid trafficking in plant photosynthetic cells. In: Wada H, Murata N (eds) Lipids in photosynthesis. Springer, Dordrecht, pp 349–372

    Google Scholar 

  35. Dorne AJ, Joyard J, Block MA et al (1985) Localization of phosphatidylcholine in outer envelope membrane of spinach-chloroplasts. J Cell Biol 100:1690–1697

    Article  CAS  PubMed  Google Scholar 

  36. Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91

    Article  CAS  PubMed  Google Scholar 

  37. Joyard J, Ferro M, Masselon C et al (2010) Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog Lipid Res 49:128–158

    Article  CAS  PubMed  Google Scholar 

  38. Jouhet J, Marechal E, Baldan B et al (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167:863–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Székely G, Abrahám E, Cséplo A et al (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  CAS  PubMed  Google Scholar 

  40. Tjellstrom H, Andersson MX, Larsson KE et al (2008) Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. Plant Cell Environ 31:1388–1398

    Article  CAS  PubMed  Google Scholar 

  41. Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    Article  CAS  PubMed  Google Scholar 

  42. Goyer A (2010) Thiamine in plants: aspects of its metabolism and functions. Phytochemistry 71:1615–1624

    Article  CAS  PubMed  Google Scholar 

  43. Frelin O, Agrimi G, Laera VL et al (2012) Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize. Funct Integr Genomics 12(2):317–326

    Article  CAS  PubMed  Google Scholar 

  44. Rebeille F, Alban C, Bourguignon J et al (2007) The role of plant mitochondria in the biosynthesis of coenzymes. Photosynth Res 92:149–162

    Article  CAS  PubMed  Google Scholar 

  45. Azevedo RA, Lancien M, Lea PJ (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30:143–162

    Article  CAS  PubMed  Google Scholar 

  46. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miyaji T, Kuromori T, Takeuchi Y et al (2015) AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nat Commun 6:5928

    Article  CAS  PubMed  Google Scholar 

  48. Mooney S, Hellmann H (2010) Vitamin B6: killing two birds with one stone? Phytochemistry 71:495–501

    Article  CAS  PubMed  Google Scholar 

  49. Zallot R, Agrimi G, Lerma-Ortiz C et al (2013) Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis. Plant Physiol 162(2):581–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Noctor G, Queval G, Gakiere B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620

    Article  CAS  PubMed  Google Scholar 

  51. Palmieri F, Rieder B, Ventrella A et al (2009) Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J Biol Chem 284:31249–31259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Finazzi G, Petroutsos D, Tomizioli M et al (2015) Ions channels/transporters and chloroplast regulation. Cell Calcium 58(1):86–97

    Article  CAS  PubMed  Google Scholar 

  53. Xu H, Martinoia E, Szabo I (2015) Organellar channels and transporters. Cell Calcium 58(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. López-Millán AF, Duy D, Philippar K (2016) Chloroplast iron transport proteins - function and impact on plant physiology. Front Plant Sci 7:178

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kunz HH, Gierth M, Herdean A et al (2014) Plastidial transporters KEA1, −2, and −3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc Natl Acad Sci U S A 111(20):7480–7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boutigny S, Sautron E, Finazzi G et al (2014) HMA1 and PAA1, two chloroplast-envelope PIB-ATPases, play distinct roles in chloroplast copper homeostasis. J Exp Bot 65(6):1529–1540

    Article  CAS  PubMed  Google Scholar 

  57. Maeda S, Konishi M, Yanagisawa S et al (2014) Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant Cell Physiol 55(7):1311–1324

    Article  CAS  PubMed  Google Scholar 

  58. Sautron E, Mayerhofer H, Giustini C et al (2015) HMA6 and HMA8 are two chloroplast cu+-ATPases with different enzymatic properties. Biosci Rep 35(3):e00201

    PubMed  PubMed Central  Google Scholar 

  59. Goetze TA, Patil M, Jeshen I et al (2015) Oep23 forms an ion channel in the chloroplast outer envelope. BMC Plant Biol 15:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aranda-Sicilia MN, Aboukila A, Armbruster U et al (2016) Envelope K+/H+ Antiporters AtKEA1 and AtKEA2 function in plastid development. Plant Physiol 172(1):441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sautron E, Giustini C, Dang T et al (2016) Identification of two conserved residues involved in copper release from chloroplast PIB-1-ATPases. J Biol Chem 291(38):20136–20148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gloaguen P, Bournais S, Alban C et al (2017) ChloroKB: a web application for the integration of knowledge related to chloroplast metabolic network. Plant Physiol 174(2):922–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors regret omission of many relevant citations due to space constraints. N.R., I.B., L.M., D.S. and M.K. acknowledge support from the ANR project ANR-15-IDEX-02. I.B. is supported by a joint PhD fellowship from the INRA Plant Biology and Breeding Division and from the Labex GRAL (ANR-10-LABX-49-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Rolland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rolland, N., Bouchnak, I., Moyet, L., Salvi, D., Kuntz, M. (2018). The Main Functions of Plastids. In: Maréchal, E. (eds) Plastids. Methods in Molecular Biology, vol 1829. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8654-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8654-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8653-8

  • Online ISBN: 978-1-4939-8654-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics