Skip to main content

In Vitro System for Coupling RNAP II Transcription to Primary microRNA Processing and a Three-Way System for RNAP II Transcription/Splicing/microRNA Processing

  • Protocol
  • First Online:
miRNA Biogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1823))

Abstract

In the genome, primary microRNAs (pri-miRNAs) are encoded either as independent transcriptional units with their own promoters (intergenic miRNAs) or within the introns of other genes (intronic miRNAs). Here, we report two methods, one that we established for coupled RNAP II transcription and pri-miRNA processing and the other that is a three-way system for RNAP II transcription, pri-miRNA processing, and pre-mRNA splicing. In these systems, CMV-DNA constructs encoding the processing substrates are incubated in HeLa cell nuclear extracts in the presence of 32P-UTP to generate the nascent RNAP II transcripts, which are processed efficiently by the endogenous RNA processing machineries in nuclear extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenleaf AL (1993) Positive patches and negative noodles: linking RNA processing to transcription? Trends Biochem Sci 18(4):117–119. https://doi.org/10.1016/(93)90016-g

    Article  PubMed  CAS  Google Scholar 

  2. Maniatis T, Reed R (2002) An extensive network of coupling among gene expression machines. Nature 416(6880):499–506

    Article  CAS  PubMed  Google Scholar 

  3. Prasanth KV, Spector DL (2007) Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev 21(1):11–42. https://doi.org/10.1101/gad.1484207

    Article  PubMed  CAS  Google Scholar 

  4. Buratowski S (2009) Progression through the RNA polymerase II CTD cycle. Mol Cell 36(4):541–546. https://doi.org/10.1016/j.molcel.2009.10.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11(4):285–296. https://doi.org/10.1038/nrg2752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Proudfoot NJ (2011) Ending the message: poly(A) signals then and now. Genes Dev 25(17):1770–1782. https://doi.org/10.1101/gad.17268411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hsin JP, Manley JL (2012) The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26(19):2119–2137. https://doi.org/10.1101/gad.200303.112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gomez Acuna LI, Fiszbein A, Allo M, Schor IE, Kornblihtt AR (2013) Connections between chromatin signatures and splicing. Wiley Interdiscip Rev RNA 4(1):77–91. https://doi.org/10.1002/wrna.1142

    Article  PubMed  CAS  Google Scholar 

  9. Brugiolo M, Herzel L, Neugebauer KM (2013) Counting on co-transcriptional splicing. F1000Prime Rep 5:9. https://doi.org/10.12703/P5-9

    Article  PubMed  PubMed Central  Google Scholar 

  10. Muller-McNicoll M, Neugebauer KM (2013) How cells get the message: dynamic assembly and function of mRNA-protein complexes. Nat Rev Genet 14(4):275–287. https://doi.org/10.1038/nrg3434

    Article  PubMed  CAS  Google Scholar 

  11. Bentley DL (2014) Coupling mRNA processing with transcription in time and space. Nat Rev Genet 15(3):163–175. https://doi.org/10.1038/nrg3662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yin S, Yu Y, Reed R (2015) Primary microRNA processing is functionally coupled to RNAP II transcription in vitro. Sci Rep 5:11992. https://doi.org/10.1038/srep11992

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reed R, Hurt E (2002) A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108(4):523–531

    Article  CAS  PubMed  Google Scholar 

  14. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  15. Bartel DP, Chen C-Z (2004) Opinion: micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5(5):396–400. https://doi.org/10.1038/nrg1328

    Article  PubMed  CAS  Google Scholar 

  16. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. https://doi.org/10.1038/nature02871

    Article  PubMed  CAS  Google Scholar 

  17. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  18. Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235. https://doi.org/10.1038/nature03049

    Article  PubMed  CAS  Google Scholar 

  19. Gregory RI, K-p Y, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240. https://doi.org/10.1038/nature03120

    Article  PubMed  CAS  Google Scholar 

  20. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419. https://doi.org/10.1038/nature01957

    Article  PubMed  CAS  Google Scholar 

  21. Lund E (2004) Nuclear export of MicroRNA precursors. Science 303(5654):95–98. https://doi.org/10.1126/science.1090599

    Article  PubMed  CAS  Google Scholar 

  22. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349. https://doi.org/10.1038/nature02873

    Article  PubMed  CAS  Google Scholar 

  23. Morlando M, Ballarino M, Gromak N, Pagano F, Bozzoni I, Proudfoot NJ (2008) Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 15(9):902–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yin S, Lopez-Gonzalez R, Kunz RC, Gangopadhyay J, Borufka C, Gygi SP, Gao FB, Reed R (2017) Evidence that C9ORF72 dipeptide repeat proteins associate with U2 snRNP to cause Mis-splicing in ALS/FTD patients. Cell Rep 19(11):2244–2256. https://doi.org/10.1016/j.celrep.2017.05.056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11(5):1475–1489. https://doi.org/10.1093/nar/11.5.1475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Reddy R, Henning D, Das G, Harless M, Wright D (1987) The capped U6 small nuclear RNA is transcribed by RNA polymerase III. J Biol Chem 262(1):75–81

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to members of the Reed lab for comments on the manuscript. This work was supported by an NIH grant GM122524 to RR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yin, S., Iocolano, A., Yu, Y., Gangopadhyay, J., Reed, R. (2018). In Vitro System for Coupling RNAP II Transcription to Primary microRNA Processing and a Three-Way System for RNAP II Transcription/Splicing/microRNA Processing. In: Ørom, U. (eds) miRNA Biogenesis. Methods in Molecular Biology, vol 1823. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8624-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8624-8_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8623-1

  • Online ISBN: 978-1-4939-8624-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics