Skip to main content

Assays for NAD+-Dependent Reactions and NAD+ Metabolites

  • Protocol
  • First Online:
ADP-ribosylation and NAD+ Utilizing Enzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1813))

Abstract

Nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor and signaling molecule that controls the activity of enzymes involved in metabolism, DNA repair, and cellular survival, such as the PARPs, CD38, and the sirtuins. Here, we describe three methods for measuring the activity of these enzymes: the etheno-NAD+ assay measures NAD+ hydrolase activity using an NAD+ analog to produce a fluorescent product that is measured in real time; the PNC1 assay converts a native product of NAD+ hydrolysis, nicotinamide, into a quantitative fluorescent readout; and liquid chromatography tandem mass spectrometry (LC-MS/MS) is used to characterize the entire NAD+ metabolome in a sample. These methods will enable new insights into the roles that NAD+ and the enzymes that utilize it play in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kang B-NN, Tirumurugaan KG, Deshpande DA, Amrani Y, Panettieri RA, Walseth TF, Kannan MS (2006) Transcriptional regulation of CD38 expression by tumor necrosis factor-alpha in human airway smooth muscle cells: role of NF-kappaB and sensitivity to glucocorticoids. FASEB J 20:1000–1002

    Article  CAS  Google Scholar 

  2. Escande C, Nin V, Price NL, Capellini V, Gomes AP, Barbosa MT, O’Neil L, White TA, Sinclair DA, Chini EN (2013) Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62:1084–1093

    Article  CAS  Google Scholar 

  3. Yilmaz ÖHH, Katajisto P, Lamming DW, Gültekin Y, Bauer-Rowe KE, Sengupta S, Birsoy K, Dursun A, Yilmaz VO, Selig M, Nielsen GP, Mino-Kenudson M, Zukerberg LR, Bhan AK, Deshpande V, Sabatini DM (2012) mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486:490–495

    Article  CAS  Google Scholar 

  4. Lopatina O, Yoshihara T, Nishimura T, Zhong J, Akther S, Fakhrul AA, Liang M, Higashida C, Sumi K, Furuhara K, Inahata Y, Huang J-JJ, Koizumi K, Yokoyama S, Tsuji T, Petugina Y, Sumarokov A, Salmina AB, Hashida K, Kitao Y, Hori O, Asano M, Kitamura Y, Kozaka T, Shiba K, Zhong F, Xie M-JJ, Sato M, Ishihara K, Higashida H (2014) Anxiety- and depression-like behavior in mice lacking the CD157/BST1 gene, a risk factor for Parkinson’s disease. Front Behav Neurosci 8:133

    Article  Google Scholar 

  5. Bonkowski MS, Sinclair DA (2016) Slowing ageing by design: the rise of NAD(+) and sirtuin-activating compounds. Nat Rev Mol Cell Biol 17:679–690

    Article  CAS  Google Scholar 

  6. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    Article  CAS  Google Scholar 

  7. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    Article  CAS  Google Scholar 

  8. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380

    Article  CAS  Google Scholar 

  9. Lombard DB, Alt FW, Cheng H-LL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese RV, Weissman S, Verdin E, Schwer B (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27:8807–8814

    Article  CAS  Google Scholar 

  10. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690

    Article  CAS  Google Scholar 

  11. Guarani V, Deflorian G, Franco CA, Krüger M, Phng L-KK, Bentley K, Toussaint L, Dequiedt F, Mostoslavsky R, Schmidt MHH, Zimmermann B, Brandes RP, Mione M, Westphal CH, Braun T, Zeiher AM, Gerhardt H, Dimmeler S, Potente M (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473:234–238

    Article  CAS  Google Scholar 

  12. Zhang J (2007) The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem 282:34356–34364

    Article  CAS  Google Scholar 

  13. Cantó C, Menzies KJ, Auwerx J (2015) NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53

    Article  Google Scholar 

  14. Bai P, Cantó C, Oudart H, Brunyánszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, Schoonjans K, Schreiber V, Sauve AA, Menissier-de Murcia J, Auwerx J (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13:461–468

    Article  CAS  Google Scholar 

  15. Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R (2011) Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 6:e19194

    Article  CAS  Google Scholar 

  16. Muller HM, Muller CD, Schuber F (1983) NAD+ glycohydrolase, an ecto-enzyme of calf spleen cells. Biochem J 212:459–464

    Article  CAS  Google Scholar 

  17. Sugawara K, Oyama F (1981) Fluorogenic reaction and specific microdetermination of ammonia. J Biochem 89:771–774

    Article  CAS  Google Scholar 

  18. Hubbard BP, Sinclair DA (2013) Measurement of sirtuin enzyme activity using a substrate-agnostic fluorometric nicotinamide assay. Methods Mol Biol 1077:167–177

    Article  CAS  Google Scholar 

  19. Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, Riera TV, Lee JE, E SY, Lamming DW, Pentelute BL, Schuman ER, Stevens LA, Ling AJ, Armour SM, Michan S, Zhao H, Jiang Y, Sweitzer SM, Blum CA, Disch JS, Ng PY, Howitz KT, Rolo AP, Hamuro Y, Moss J, Perni RB, Ellis JL, Vlasuk GP, Sinclair DA (2013) Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339:1216–1219

    Article  CAS  Google Scholar 

  20. Trammell SA, Brenner C (2013) Targeted, LCMS-based metabolomics for quantitative measurement of NAD(+) metabolites. Comput Struct Biotechnol J 4:e201301012

    Article  Google Scholar 

Download references

Acknowledgments

N.B. is the recipient of the Australian Research Council Discovery Early Career Research Award at the University of New South Wales, Sydney, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Sinclair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schultz, M.B., Lu, Y., Braidy, N., Sinclair, D.A. (2018). Assays for NAD+-Dependent Reactions and NAD+ Metabolites. In: Chang, P. (eds) ADP-ribosylation and NAD+ Utilizing Enzymes. Methods in Molecular Biology, vol 1813. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8588-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8588-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8587-6

  • Online ISBN: 978-1-4939-8588-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics