Skip to main content

Single-Molecule Patterning via DNA Nanostructure Assembly: A Reusable Platform

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1811))

Abstract

Here we describe a facile strategy of general applicability for controlling the immobilization of individual nanomoieties on nanopatterned surfaces with single-molecule control. We combine the ability of DNA nanostructures as programmable platforms, with a one-step Focused Ion Beam nanopatterning, to demonstrate the controlled immobilization of DNA origami functionalized with individual quantum dots (QDs) at predesigned positions on glass coverslips and silicon substrates. Remarkably, the platform developed is reusable after a simple cleaning process, and can be designed to display different geometrical arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishijima A, Yanagida T (2001) Single molecule nanobioscience. Trends Biochem Sci 26(7):438–444. https://doi.org/10.1016/S0968-0004(01)01860-6

    Article  CAS  PubMed  Google Scholar 

  2. Cordes T, Blum SA (2013) Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nat Chem 5(12):993–999. https://doi.org/10.1038/nchem.1800

    Article  CAS  PubMed  Google Scholar 

  3. Moth-Poulsen K, Bjørnholm T (2010) From nanofabrication to self-fabrication – tailored chemistry for control of single molecule electronic devices. CHIMIA Int J Chem 64(6):404–408. https://doi.org/10.2533/chimia.2010.404

    Article  CAS  Google Scholar 

  4. Palma M, Abramson JJ, Gorodetsky AA, Penzo E, Gonzalez RL Jr, Sheetz MP, Nuckolls C, Hone J, Wind SJ (2011) Selective biomolecular nanoarrays for parallel single-molecule investigations. J Am Chem Soc 133(20):7656–7659. https://doi.org/10.1021/ja201031g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Noh H, Hung AM, Choi C, Lee JH, Kim JY, Jin S, Cha JN (2009) 50 nm DNA nanoarrays generated from uniform oligonucleotide films. ACS Nano 3(8):2376–2382. https://doi.org/10.1021/nn900559m

    Article  CAS  PubMed  Google Scholar 

  6. Gerdon AE, Oh SS, Hsieh K, Ke Y, Yan H, Soh HT (2009) Controlled delivery of DNA origami on patterned surfaces. Small 5(17):1942–1946. https://doi.org/10.1002/smll.200900442

    Article  CAS  PubMed  Google Scholar 

  7. Schvartzman M, Palma M, Sable J, Abramson J, Hu X, Sheetz MP, Wind SJ (2011) Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett 11(3):1306–1312. https://doi.org/10.1021/nl104378f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim JD, Ahn D-G, Oh J-W, Park W, Jung H (2008) Ribosome display and dip-pen nanolithography for the fabrication of protein Nanoarrays. Adv Mater 20(17):3349–3353. https://doi.org/10.1002/adma.200800027

    Article  CAS  Google Scholar 

  9. Bulyk ML (2007) Protein binding microarrays for the characterization of DNA-protein interactions. Adv Biochem Eng Biotechnol 104:65–85. https://doi.org/10.1007/10_025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Demers LM, Ginger DS, Park SJ, Li Z, Chung SW, Mirkin CA (2002) Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296(5574):1836–1838

    Article  CAS  Google Scholar 

  11. Lalander CH, Zheng Y, Dhuey S, Cabrini S, Bach U (2010) DNA-directed self-assembly of gold nanoparticles onto nanopatterned surfaces: controlled placement of individual nanoparticles into regular arrays. ACS Nano 4(10):6153–6161. https://doi.org/10.1021/nn101431k

    Article  CAS  PubMed  Google Scholar 

  12. Junkin M, Watson J, Geest J, Wong P (2009) Template-guided self-assembly of colloidal quantum dots using plasma lithography. Adv Mater 21(12):1247–1251. https://doi.org/10.1002/adma.200802122

    Article  CAS  Google Scholar 

  13. Xie W, Gomes R, Aubert T, Bisschop S, Zhu Y, Hens Z, Brainis E, Van Thourhout D (2015) Nanoscale and single-dot patterning of colloidal quantum dots. Nano Lett 15(11):7481–7487. https://doi.org/10.1021/acs.nanolett.5b03068

    Article  CAS  PubMed  Google Scholar 

  14. Wang CJ, Huang L, Parviz BA, Lin LY (2006) Subdiffraction photon guidance by quantum-dot cascades. Nano Lett 6(11):2549–2553

    Article  CAS  Google Scholar 

  15. Abramson J, Palma M, Wind SJ, Hone J (2012) Quantum dot Nanoarrays: self-assembly with single-particle control and resolution. Adv Mater 24(16):2207–2211

    Article  CAS  Google Scholar 

  16. Scheible MB, Pardatscher G, Kuzyk A, Simmel FC (2014) Single molecule characterization of DNA binding and strand displacement reactions on lithographic DNA origami microarrays. Nano Lett 14(3):1627–1633. https://doi.org/10.1021/nl500092j

    Article  CAS  PubMed  Google Scholar 

  17. Koirala D, Shrestha P, Emura T, Hidaka K, Mandal S, Endo M, Sugiyama H, Mao H (2014) Single-molecule mechanochemical sensing using DNA origami nanostructures. Angew Chem Int Ed 53(31):8137–8141. https://doi.org/10.1002/anie.201404043

    Article  CAS  Google Scholar 

  18. Voigt NV, Torring T, Rotaru A, Jacobsen MF, Ravnsbaek JB, Subramani R, Mamdouh W, Kjems J, Mokhir A, Besenbacher F, Gothelf KV (2010) Single-molecule chemical reactions on DNA origami. Nat Nanotechnol 5(3):200–203. https://doi.org/10.1038/nnano.2010.5

    Article  CAS  PubMed  Google Scholar 

  19. Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323(5910):112–116. https://doi.org/10.1126/science.1165831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharma J, Chhabra R, Liu Y, Ke Y, Yan H (2006) DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew Chem Int Ed Engl 45(5):730–735. https://doi.org/10.1002/anie.200503208

    Article  CAS  PubMed  Google Scholar 

  21. Sharma J, Ke Y, Lin C, Chhabra R, Wang Q, Nangreave J, Liu Y, Yan H (2008) DNA-tile-directed self-assembly of quantum dots into two-dimensional nanopatterns. Angew Chem Int Ed 47(28):5157–5159. https://doi.org/10.1002/anie.200801485

    Article  CAS  Google Scholar 

  22. Schreiber R, Do J, Roller EM, Zhang T, Schuller VJ, Nickels PC, Feldmann J, Liedl T (2014) Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat Nanotechnol 9(1):74–78. https://doi.org/10.1038/nnano.2013.253

    Article  CAS  PubMed  Google Scholar 

  23. Ding B, Deng Z, Yan H, Cabrini S, Zuckermann RN, Bokor J (2010) Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc 132(10):3248–3249. https://doi.org/10.1021/ja9101198

    Article  CAS  PubMed  Google Scholar 

  24. Li Z, Chung SW, Nam JM, Ginger DS, Mirkin CA (2003) Living templates for the hierarchical assembly of gold nanoparticles. Angew Chem Int Ed Engl 42(20):2306–2309. https://doi.org/10.1002/anie.200351231

    Article  CAS  PubMed  Google Scholar 

  25. Macfarlane RJ, Lee B, Jones MR, Harris N, Schatz GC, Mirkin CA (2011) Nanoparticle superlattice engineering with DNA. Science 334(6053):204–208. https://doi.org/10.1126/science.1210493

    Article  CAS  PubMed  Google Scholar 

  26. Fu A, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004) Discrete nanostructures of quantum dots/au with DNA. J Am Chem Soc 126(35):10832–10833. https://doi.org/10.1021/ja046747x

    Article  CAS  PubMed  Google Scholar 

  27. Huang D, Freeley M, Palma M (2017) DNA-mediated patterning of single quantum dot Nanoarrays: a reusable platform for single-molecule control. Sci Rep 7:45591. https://doi.org/10.1038/srep45591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hung AM, Micheel CM, Bozano LD, Osterbur LW, Wallraff GM, Cha JN (2010) Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat Nanotechnol 5(2):121–126. https://doi.org/10.1038/Nnano.2009.450

    Article  CAS  PubMed  Google Scholar 

  29. Hung AM, Noh H, Cha JN (2010) Recent advances in DNA-based directed assembly on surfaces. Nanoscale 2(12):2530–2537. https://doi.org/10.1039/c0nr00430h

    Article  CAS  PubMed  Google Scholar 

  30. Zhang F, Nangreave J, Liu Y, Yan H (2014) Structural DNA nanotechnology: state of the art and future perspective. J Am Chem Soc 136(32):11198–11211. https://doi.org/10.1021/ja505101a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Samanta A, Banerjee S, Liu Y (2015) DNA nanotechnology for nanophotonic applications. Nanoscale 7(6):2210–2220. https://doi.org/10.1039/c4nr06283c

    Article  CAS  PubMed  Google Scholar 

  32. Kumar A, Hwang JH, Kumar S, Nam JM (2013) Tuning and assembling metal nanostructures with DNA. Chem Commun 49(26):2597–2609. https://doi.org/10.1039/c2cc37536b

    Article  CAS  Google Scholar 

  33. Gopinath A, Rothemund PW (2014) Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays. ACS Nano 8(12):12030–12040. https://doi.org/10.1021/nn506014s

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D.H. is financially supported by the Chinese Scholarship Council. We further gratefully acknowledge financial support from Queen Mary University of London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Palma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, D., Freeley, M., Palma, M. (2018). Single-Molecule Patterning via DNA Nanostructure Assembly: A Reusable Platform. In: Zuccheri, G. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 1811. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8582-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8582-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8581-4

  • Online ISBN: 978-1-4939-8582-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics