Skip to main content

A Bacterial Adenylate Cyclase-Based Two-Hybrid System Compatible with Gateway® Cloning

  • Protocol
  • First Online:
Two-Hybrid Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1794))

Abstract

The bacterial adenylate cyclase two-hybrid system (BACTH) is a genetic approach used to test protein interactions in vivo in E. coli. This system takes advantage of the two catalytic domains of Bordetella pertussis adenylate cyclase (CyaA) toxin, which can be fused separately to proteins of interest. If the proteins of interest interact, then the adenylate cyclase domains will be brought in close proximity to each other, reconstituting cyclic AMP (cAMP) production. Interacting proteins can be both qualitatively and quantitatively assessed by the expression of chromosomal genes of the E. coli lac or mal operon, which are positively regulated by cAMP production. Because cAMP is diffusible, the proteins of interest do not need to interact near the transcriptional machinery. Consequently, both cytosolic and membrane protein–protein interactions can be tested. The BACTH system has recently been modified to be compatible with Gateway® recombinational cloning, BACTHGW. This chapter explains the principle of the BACTH, its Gateway® modified system, and details of the general procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fields S, O-k S (1989) A novel genetic system to detect protein–protein interactions. Nature 340(6230):245–246

    Article  CAS  PubMed  Google Scholar 

  2. Stynen B, Tournu H, Tavernier J, Van Dijck P (2012) Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 76(2):331–382. https://doi.org/10.1128/mmbr.05021-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Karimova G, Ullmann A, Ladant D (2000) A bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli. Methods Enzymol 328:59–73

    Article  CAS  PubMed  Google Scholar 

  4. Gyuris J, Golemis E, Chertkov H, Brent R (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75(4):791–803

    Article  CAS  PubMed  Google Scholar 

  5. Ladant D, Ullmann A (1999) Bordatella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol 7(4):172–176

    Article  CAS  PubMed  Google Scholar 

  6. Karimova G, Pidoux J, Ullmann A, Ladant D (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95(10):5752–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Busby S, Ebright RH (1999) Transcription activation by catabolite activator protein (CAP). J Mol Biol 293(2):199–213

    Article  CAS  PubMed  Google Scholar 

  8. Karimova G, Dautin N, Ladant D (2005) Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187(7):2233–2243. https://doi.org/10.1128/jb.187.7.2233-2243.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, Sargent F (2004) Coordinating assembly and export of complex bacterial proteins. EMBO J 23(20):3962–3972. https://doi.org/10.1038/sj.emboj.7600409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cisneros DA, Bond PJ, Pugsley AP, Campos M, Francetic O (2012) Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J 31(4):1041–1053. https://doi.org/10.1038/emboj.2011.454

    Article  PubMed  CAS  Google Scholar 

  11. Gauliard E, Ouellette SP, Rueden KJ, Ladant D (2015) Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis. Front Cell Infect Microbiol 5:13. https://doi.org/10.3389/fcimb.2015.00013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Georgiadou M, Castagnini M, Karimova G, Ladant D, Pelicic V (2012) Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly. Mol Microbiol 84(5):857–873. https://doi.org/10.1111/j.1365-2958.2012.08062.x

    Article  PubMed  CAS  Google Scholar 

  13. Zoued A, Durand E, Brunet YR, Spinelli S, Douzi B, Guzzo M, Flaugnatti N, Legrand P, Journet L, Fronzes R, Mignot T, Cambillau C, Cascales E (2016) Priming and polymerization of a bacterial contractile tail structure. Nature 531(7592):59–63. https://doi.org/10.1038/nature17182

    Article  PubMed  CAS  Google Scholar 

  14. Ouellette SP, Gauliard E, Antosova Z, Ladant D (2014) A Gateway((R))-compatible bacterial adenylate cyclase-based two-hybrid system. Environ Microbiol Rep 6(3):259–267. https://doi.org/10.1111/1758-2229.12123

    Article  PubMed  CAS  Google Scholar 

  15. Lawson CL, Swigon D, Murakami KS, Darst SA, Berman HM, Ebright RH (2004) Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol 14(1):10–20. https://doi.org/10.1016/j.sbi.2004.01.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Karimova G, Ullmann A, Ladant D (2001) Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. J Mol Microbiol Biotechnol 3(1):73–82

    PubMed  CAS  Google Scholar 

  17. Dautin N, Karimova G, Ladant D (2003) Human immunodeficiency virus (HIV) type 1 transframe protein can restore activity to a dimerization-deficient HIV protease variant. J Virol 77(15):8216–8226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Battesti A, Bouveret E (2012) The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods (San Diego, Calif) 58(4):325–334. https://doi.org/10.1016/j.ymeth.2012.07.018

    Article  CAS  Google Scholar 

  19. Fransen M, Brees C, Ghys K, Amery L, Mannaerts GP, Ladant D, Van Veldhoven PP (2002) Analysis of mammalian peroxin interactions using a non-transcription-based bacterial two-hybrid assay. Mol Cell Proteomics 1(3):243–252

    Article  CAS  PubMed  Google Scholar 

  20. Ouellette SP, Rueden KJ, Gauliard E, Persons L, de Boer PA, Ladant D (2014) Analysis of MreB interactors in Chlamydia reveals a RodZ homolog but fails to detect an interaction with MraY. Front Microbiol 5:279. https://doi.org/10.3389/fmicb.2014.00279

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dautin N, Karimova G, Ullmann A, Ladant D (2000) Sensitive genetic screen for protease activity based on a cyclic AMP signaling cascade in Escherichia coli. J Bacteriol 182(24):7060–7066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ouellette SP, Karimova G, Subtil A, Ladant D (2012) Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division. Mol Microbiol 85(1):164–178. https://doi.org/10.1111/j.1365-2958.2012.08100.x

    Article  PubMed  CAS  Google Scholar 

  23. Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10(11):1788–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sands B, Brent R (2015) Overview of post Cohen-Boyer methods for single segment cloning and for multisegment DNA assembly. Curr Protoc Mol Biol 113:3.26.1–23.26.20

    Google Scholar 

  25. Sambrook J, Russell DW (2006) The condensed protocols from molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  26. Kramer M, Coen D (2001) Enzymatic amplification of DNA by PCR: standard procedures and optimization. Curr Protoc Immunol Chapter10:Unit 10.20

    Google Scholar 

  27. Karimova G, Davi M, Ladant D (2012) The beta-lactam resistance protein Blr, a small membrane polypeptide, is a component of the Escherichia coli cell division machinery. J Bacteriol 194(20):5576–5588. https://doi.org/10.1128/jb.00774-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Karimova G, Robichon C, Ladant D (2009) Characterization of YmgF, a 72-residue inner membrane protein that associates with the Escherichia coli cell division machinery. J Bacteriol 191(1):333–346. https://doi.org/10.1128/jb.00331-08

    Article  PubMed  CAS  Google Scholar 

  29. Wilson K (2001) Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol Chapter 2:Unit 2.4

    PubMed  CAS  Google Scholar 

  30. Ouellette SP, Karimova G, Davi M, Ladant D (2017) Analysis of membrane protein interactions with a bacterial adenylate cyclase-based two-hybrid (BACTH) technique. Curr Protoc Mol Biol 118:20.12.21–20.12.24. https://doi.org/10.1002/cpmb.36

    Article  Google Scholar 

  31. Zervos AS, Gyuris J, Brent R (1993) Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72(2):223–232

    Article  CAS  PubMed  Google Scholar 

  32. Miller J (1993) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Trends Biochem Sci 18:193

    Google Scholar 

  33. Nichols NM (2011) Endonucleases. Curr Protoc Mol Biol Chapter 3:Unit 3.12

    Google Scholar 

  34. Kucera RB, Nichols NM (2008) DNA-dependent DNA polymerases. Curr Protoc Mol Biol Chapter 3:3.5.1–3.5.19

    Google Scholar 

  35. Bloch KD, Grossmann B (1995) Digestion of DNA with restriction endonucleases. Curr Protoc Mol Biol Chapter 3:3.1.1–3.1.21

    Google Scholar 

  36. Voytas D (2001) Agarose gel electrophoresis. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb0205as51

  37. Chen AL, Johnson KA, Lee JK, Sutterlin C, Tan M (2012) CPAF: a Chlamydial protease in search of an authentic substrate. PLoS Pathog 8(8):e1002842. https://doi.org/10.1371/journal.ppat.1002842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kleinschnitz EM, Heichlinger A, Schirner K, Winkler J, Latus A, Maldener I, Wohlleben W, Muth G (2011) Proteins encoded by the mre gene cluster in Streptomyces coelicolor A3 (2) cooperate in spore wall synthesis. Mol Microbiol 79(5):1367–1379

    Article  CAS  PubMed  Google Scholar 

  39. Houot L, Fanni A, de Bentzmann S, Bordi C (2012) A bacterial two-hybrid genome fragment library for deciphering regulatory networks of the opportunistic pathogen Pseudomonas aeruginosa. Microbiology 158(8):1964–1971

    Article  CAS  PubMed  Google Scholar 

  40. Pfeiffer D, Jendrossek D (2011) Interaction between poly (3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16. Microbiology 157(10):2795–2807

    Article  CAS  PubMed  Google Scholar 

  41. Griffith KL, Wolf RE Jr (2002) Measuring beta-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem Biophys Res Commun 290(1):397–402. https://doi.org/10.1006/bbrc.2001.6152

    Article  PubMed  CAS  Google Scholar 

  42. Naumovski L (2001) Two-hybrid interactions confirmed by coimmunoprecipitation of epitope-tagged clones. In: MacDonald PN (ed) Two-hybrid systems: methods and protocols. Humana Press, Totowa, pp 151–159. https://doi.org/10.1385/1-59259-210-4:151

    Chapter  Google Scholar 

  43. Kraichely DM, MacDonald PN (2001) Confirming yeast two-hybrid protein interactions using in vitro glutathione-S-transferase pulldowns. In: MacDonald PN (ed) Two-hybrid systems: methods and protocols. Humana Press, Totowa, pp 135–150. https://doi.org/10.1385/1-59259-210-4:135

    Chapter  Google Scholar 

  44. Robichon C, Karimova G, Beckwith J, Ladant D (2011) Role of leucine zipper motifs in association of the Escherichia coli cell division proteins FtsL and FtsB. J Bacteriol 193(18):4988–4992. https://doi.org/10.1128/jb.00324-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Battesti A, Bouveret E (2008) Improvement of bacterial two-hybrid vectors for detection of fusion proteins and transfer to pBAD-tandem affinity purification, calmodulin binding peptide, or 6-histidine tag vectors. Proteomics 8(22):4768–4771. https://doi.org/10.1002/pmic.200800270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, the University of Nebraska Medical Center, and by the Institut Pasteur and the Centre National de la Recherche Scientifique (CNRS UMR 3528, Biologie Structurale et Agents Infectieux). S.P.O. is supported by an award (1R35GM124798-01) from NIGMS/NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scot P. Ouellette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Olson, M.G., Goldammer, M., Gauliard, E., Ladant, D., Ouellette, S.P. (2018). A Bacterial Adenylate Cyclase-Based Two-Hybrid System Compatible with Gateway® Cloning. In: Oñate-Sánchez, L. (eds) Two-Hybrid Systems. Methods in Molecular Biology, vol 1794. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7871-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7871-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7870-0

  • Online ISBN: 978-1-4939-7871-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics