Skip to main content

Genome Editing: CRISPR-Cas9

  • Protocol
  • First Online:
Book cover Fungal Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1775))

Abstract

In the present chapter, we present the protocols and guidelines to facilitate implementation of CRISPR-Cas9 technology in fungi where few or no genetic tools are in place. Hence, we firstly explain how to identify dominant markers for genetic transformation. Secondly, we provide a guide for construction of Cas9/sgRNA episomal expression vectors. Thirdly, we present how to mutagenize reporter genes to explore the efficiency of CRISPR-Cas9 in the relevant fungus and to ease subsequent CRISPR-mediated genetic engineering. Lastly, we describe how to make CRISPR-mediated marker-dependent and marker-free gene targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krappmann S (2007) Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev 21:25–29. https://doi.org/10.1016/j.fbr.2007.02.004

    Article  Google Scholar 

  2. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. https://doi.org/10.1126/science.1258096

    Article  PubMed  CAS  Google Scholar 

  3. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355. https://doi.org/10.1038/nbt.2842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  Google Scholar 

  5. Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10:e0133085. https://doi.org/10.1371/journal.pone.0133085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Weber J, Valiante V, Nødvig CS, Mattern DJ, Slotkowski R, Mortensen UH, Brakhage AA (2017) Functional reconstitution of a fungal natural product gene cluster by advanced genome editing. ACS Synth Biol 20:62–68. https://doi.org/10.1021/acssynbio.6b00203

    Article  CAS  Google Scholar 

  7. Wenderoth M, Pinecker C, Voß B, Fischer R (2017) Establishment of CRISPR/Cas9 in Alternaria alternata. Fungal Genet Biol 101:55–60

    Article  CAS  PubMed  Google Scholar 

  8. Nielsen ML, Isbrandt T, Rasmussen KB, Thrane U, Hoof JB, TO L, Mortensen UH (2017) Genes linked to production of secondary metabolites in Talaromyces atroroseus revealed using CRISPR-Cas9. PLoS One 12:e0169712

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39:499–509

    Article  CAS  PubMed  Google Scholar 

  10. Lanford RE, Butel JS (1984) Construction and characterization of an SV40 mutant defective in nuclear transport of T antigen. Cell 37:801–813

    Article  CAS  PubMed  Google Scholar 

  11. Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56:343–349

    Article  CAS  PubMed  Google Scholar 

  12. Gems D, Johnstone IL, Clutterbuck AJ (1991) An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 98:61–67

    Article  CAS  PubMed  Google Scholar 

  13. Nour-Eldin HH, Geu-Flores F, Halkier BA (2010) USER cloning and USER fusion: the ideal cloning techniques for small and big laboratories. Methods Mol Biol 643:185–200

    Article  CAS  PubMed  Google Scholar 

  14. Nørholm MHH (2010) A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol 10:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. d’Enfert C (1996) Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5′-decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet 30:76. https://doi.org/10.1007/s002940050103

    Article  PubMed  Google Scholar 

  17. Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007. https://doi.org/10.1038/celldisc.2015.7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gibson DG, Young L, Chuang R, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  19. Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852:51–59

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Werling U, Edelmann W (2012) SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40:1–10

    Article  CAS  Google Scholar 

  21. Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uffe H. Mortensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hoof, J.B., Nødvig, C.S., Mortensen, U.H. (2018). Genome Editing: CRISPR-Cas9. In: de Vries, R., Tsang, A., Grigoriev, I. (eds) Fungal Genomics. Methods in Molecular Biology, vol 1775. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7804-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7804-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7803-8

  • Online ISBN: 978-1-4939-7804-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics