Skip to main content

Biochemical Identification of Nonmethylated DNA by BioCAP-Seq

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1766))

Abstract

CpG islands are regions of vertebrate genomes that often function as gene regulatory elements and are associated with most gene promoters. CpG island elements usually contain nonmethylated CpG dinucleotides, while the remainder of the genome is pervasively methylated. We developed a biochemical approach called biotinylated CxxC affinity purification (BioCAP) to unbiasedly isolate regions of the genome that contain nonmethylated CpG dinucleotides. The resulting highly pure nonmethylated DNA is easily analyzed by quantitative PCR to interrogate specific loci or via massively parallel sequencing to yield genome-wide profiles.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Klose RJ, Bird AP (2006) Genomic DNA methylation: The mark and its mediators. Trends Biochem Sci 31:89–97. https://doi.org/10.1016/j.tibs.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  2. Cedar H, Bergman Y (2012) Programming of DNA methylation patterns. Annu Rev Biochem 81:97–117. https://doi.org/10.1146/annurev-biochem-052610

    Article  CAS  PubMed  Google Scholar 

  3. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492. https://doi.org/10.1038/nrg3230

    Article  CAS  PubMed  Google Scholar 

  4. Bergman Y, Cedar H (2013) DNA methylation dynamics in health and disease. Nat Struct Mol Biol 20:274–281. doi:nsmb.2518 [pii]\r10.1038/nsmb.2518

    Article  CAS  PubMed  Google Scholar 

  5. Seisenberger S, Peat JR, Hore T, Santos F, Dean W, Reik W Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond 368(2013):20110330. https://doi.org/10.1098/rstb.2011.0330

    Article  Google Scholar 

  6. Schübeler D (2015) Function and information content of DNA methylation. Nature 517:321–326. https://doi.org/10.1038/nature14192

    Article  CAS  PubMed  Google Scholar 

  7. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo Q-M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar H, Thomson J, Ren B, Ecker JR Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(2009):315–322. https://doi.org/10.1038/nature08514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schübeler D (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–495. https://doi.org/10.1038/nature10716

    Article  CAS  PubMed  Google Scholar 

  9. Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, Cai J, Zhang J, Huang X, Yu M, Wang X, Liu F, Wu CI, He C, Zhang B, Ci W, Liu J (2013) Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153:773–784. https://doi.org/10.1016/j.cell.2013.04.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Potok ME, Nix DA, Parnell TJ, Cairns BR (2013) Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153:759–772. https://doi.org/10.1016/j.cell.2013.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Illingworth R, Kerr A, DeSousa D, Jørgensen H, Ellis P, Stalker J, Jackson D, Clee C, Plumb R, Rogers J, Humphray S, Cox T, Langford C, Bird A (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6:0037–0051. https://doi.org/10.1371/journal.pbio.0060022

    Article  CAS  Google Scholar 

  12. Conway KE, McConnell BB, Bowring CE, Donald CD, Warren ST, Vertino PM (2000) TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res 60:6236–6242. https://doi.org/10.1038/321209a0

    Article  CAS  PubMed  Google Scholar 

  13. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282. https://doi.org/10.1016/0022-2836(87)90689-9

    Article  CAS  PubMed  Google Scholar 

  14. Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13:1095–1107. https://doi.org/10.1016/0888-7543(92)90024-M

    Article  CAS  PubMed  Google Scholar 

  15. Bird A, Taggart M, Frommer M, Miller OJ, Macleod D (1985) A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40:91–99. https://doi.org/10.1016/0092-8674(85)90312-5

    Article  CAS  PubMed  Google Scholar 

  16. Cierpicki T, Risner LE, Grembecka J, Lukasik SM, Popovic R, Omonkowska M, Shultis DD, Zeleznik-Le NJ, Bushweller JH (2009) Structure of the MLL CXXC domain–DNA complex and its functional role in MLL-AF9 leukemia. Nat Struct Mol Biol 17:62–68. https://doi.org/10.1038/nsmb.1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song J, Rechkoblit O, Bestor TH, Patel DJ (2011) Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331:1036–1040. https://doi.org/10.1126/science.1195380

    Article  CAS  PubMed  Google Scholar 

  18. Xu C, Bian C, Lam R, Dong A, Min J (2011) The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain. Nat Commun 2:227. https://doi.org/10.1038/ncomms1237

    Article  CAS  PubMed  Google Scholar 

  19. Song J, Teplova M, Ishibe-Murakami S, Patel DJ (2012) Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 335:709–712. https://doi.org/10.1126/science.1214453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, Park PJ, Klose RJ (2010) CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell 38:179–190. https://doi.org/10.1016/j.molcel.2010.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, Kerr ARW, Deaton A, Andrews R, James KD, Turner DJ, Illingworth R, Bird A (2010) CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464:1082–1086. https://doi.org/10.1038/nature08924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF, Rose NR, Lee S, Sims D, Cerase A, Sheahan TW, Koseki H, Brockdorff N, Ponting CP, Kessler BM, Klose RJ (2012) KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands. elife 2012:1–26. https://doi.org/10.7554/eLife.00205

    Article  CAS  Google Scholar 

  23. Boulard M, Edwards JR, Bestor TH (2015) FBXL10 protects polycomb-bound genes from hypermethylation. Nat Genet 47:1–9. https://doi.org/10.1038/ng.3272

    Article  CAS  Google Scholar 

  24. Wu X, Johansen JV, Helin K (2013) Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell 49:1134–1146. https://doi.org/10.1016/j.molcel.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  25. He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y (2013) Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol 15:373–384. https://doi.org/10.1038/ncb2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Long HK, Blackledge NP, Klose RJ (2013) ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochem Soc Trans 41:727–740. https://doi.org/10.1042/BST20130028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LLP, Ito S, Cooper S, Kondo K, Koseki Y, Ishikura T, Long HK, Sheahan TW, Brockdorff N, Kessler BM, Koseki H, Klose RJ (2014) Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157:1445–1459. https://doi.org/10.1016/j.cell.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Williams K, Christensen J, Helin K (2011) DNA methylation: TET proteins—guardians of CpG islands? EMBO Rep 13:28–35. https://doi.org/10.1038/embor.2011.233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rasmussen KD, Helin K (2016) Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 30:733–750. https://doi.org/10.1101/gad.276568.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lienert F, Wirbelauer C, Som I, Dean A, Mohn F, Schübeler D (2011) Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet 43:1091–1097. https://doi.org/10.1038/ng.946

    Article  CAS  PubMed  Google Scholar 

  31. Krebs AR, Dessus-Babus S, Burger L, Schubeler D (2014) High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions. Elife 3:e04094. https://doi.org/10.7554/eLife.04094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wachter E, Quante T, Merusi C, Arczewska A, Stewart F, Webb S, Bird A (2014) Synthetic CpG islands reveal DNA sequence determinants of chromatin structure. elife 3:e03397. https://doi.org/10.7554/eLife.03397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Long HK, King HW, Patient RK, Odom DT, Klose RJ (2016) Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved. Nucleic Acids Res 44:gkw258. https://doi.org/10.1093/nar/gkw258

    Article  CAS  Google Scholar 

  34. Van Vlodrop IJH, Niessen HEC, Derks S, Baldewijns MMLL, Van Criekinge W, Herman JG, Van Engeland M (2011) Analysis of promoter CpG island hypermethylation in cancer: location, location, location! Clin Cancer Res 17:4225–4231. https://doi.org/10.1158/1078-0432.CCR-10-3394

    Article  CAS  PubMed  Google Scholar 

  35. Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11:191–203. https://doi.org/10.1038/nrg2732

    Article  CAS  PubMed  Google Scholar 

  36. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao Y, Olshen A, Ballinger T, Zhou X, Forsberg KJ, Gu J, Echipare L, O’Geen H, Lister R, Pelizzola M, Xi Y, Epstein CB, Bernstein BE, Hawkins RD, Ren B, Chung W-Y, Gu H, Bock C, Gnirke A, Zhang MQ, Haussler D, Ecker JR, Li W, Farnham PJ, a Waterland R, Meissner A, a Marra M, Hirst M, Milosavljevic A, Costello JF (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28:1097–1105. https://doi.org/10.1038/nbt.1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJM, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257. https://doi.org/10.1038/nature09165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kriukienė E, Labrie V, Khare T, Urbanavičiūtė G, Lapinaitė A, Koncevičius K, Li D, Wang T, Pai S, Ptak C, Gordevičius J, Wang S-C, Petronis A, Klimašauskas S (2013) DNA unmethylome profiling by covalent capture of CpG sites. Nat Commun 4:2190. https://doi.org/10.1038/ncomms3190

    Article  CAS  PubMed  Google Scholar 

  39. Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr ARW, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, Bird AP (2010) Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet 6:e1001134. https://doi.org/10.1371/journal.pgen.1001134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blackledge NP, Long HK, Zhou JC, Kriaucionis S, Patient R, Klose RJ (2012) Bio-CAP: a versatile and highly sensitive technique to purify and characterise regions of non-methylated DNA. Nucleic Acids Res 40:e32. https://doi.org/10.1093/nar/gkr1207

    Article  CAS  PubMed  Google Scholar 

  41. Long HK, Sims D, Heger A, Blackledge NP, Kutter C, Wright ML, Grützner F, Odom DT, Patient R, Ponting CP, Klose RJ (2013) Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. elife 2013:1–19. https://doi.org/10.7554/eLife.00348

    Article  Google Scholar 

  42. Howarth M, Ting AY (2008) Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat Protoc 3:534–545. https://doi.org/10.1038/nprot.2008.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weyrich A (2012) Preparation of genomic DNA from mammalian sperm. Curr Protoc Mol Biol 1:2–4. https://doi.org/10.1002/0471142727.mb0213s98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Klose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Long, H.K., Rose, N.R., Blackledge, N.P., Klose, R.J. (2018). Biochemical Identification of Nonmethylated DNA by BioCAP-Seq. In: Vavouri, T., Peinado, M. (eds) CpG Islands. Methods in Molecular Biology, vol 1766. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7768-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7768-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7767-3

  • Online ISBN: 978-1-4939-7768-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics