Skip to main content

Selecting Conformational Ensembles Using Residual Electron and Anomalous Density (READ)

  • Protocol
  • First Online:
Protein Complex Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

Heterogeneous and dynamic biomolecular complexes play a central role in many cellular processes but are poorly understood due to experimental challenges in characterizing their structural ensembles. To address these difficulties, we developed a hybrid methodology that combines X-ray crystallography with ensemble selections typically used in NMR studies to determine structural ensembles of heterogeneous biomolecular complexes. The method, termed READ, for residual electron and anomalous density, enables the visualization of heterogeneous conformational ensembles of complexes within crystals. Here we present a detailed protocol for performing the ensemble selections to construct READ ensembles. From a diverse pool of binding poses, a selection scheme is used to determine a subset of conformations that maximizes agreement with the X-ray data. Overall, READ is a general approach for obtaining a high-resolution view of dynamic protein-protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keskin O, Gursoy A, Ma B et al (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108(4):1225–1244. https://doi.org/10.1021/cr040409x

    Article  PubMed  CAS  Google Scholar 

  2. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16(1):18–29. https://doi.org/10.1038/nrm3920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Fraser JS, van den Bedem H, Samelson AJ et al (2011) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci U S A 108(39):16247–16252. https://doi.org/10.1073/pnas.1111325108

    Article  PubMed  PubMed Central  Google Scholar 

  4. Salmon L, Blackledge M (2015) Investigating protein conformational energy landscapes and atomic resolution dynamics from nmr dipolar couplings: a review. Rep Prog Phys 78(12):126601. https://doi.org/10.1088/0034-4885/78/12/126601

    Article  PubMed  CAS  Google Scholar 

  5. Salmon L, Yang S, Al-Hashimi HM (2014) Advances in the determination of nucleic acid conformational ensembles. Annu Rev Phys Chem 65:293–316. https://doi.org/10.1146/annurev-physchem-040412-110059

    Article  PubMed  CAS  Google Scholar 

  6. Venditti V, Egner TK, Clore GM (2016) Hybrid approaches to structural characterization of conformational ensembles of complex macromolecular systems combining nmr residual dipolar couplings and solution x-ray scattering. Chem Rev 116(11):6305–6322. https://doi.org/10.1021/acs.chemrev.5b00592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Jensen MR, Zweckstetter M, Huang JR et al (2014) Exploring free-energy landscapes of intrinsically disordered proteins at atomic resolution using nmr spectroscopy. Chem Rev 114(13):6632–6660. https://doi.org/10.1021/cr400688u

    Article  PubMed  CAS  Google Scholar 

  8. Nodet G, Salmon L, Ozenne V et al (2009) Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from nmr residual dipolar couplings. J Am Chem Soc 131(49):17908–17918. https://doi.org/10.1021/ja9069024

    Article  PubMed  CAS  Google Scholar 

  9. Salmon L, Bascom G, Andricioaei I et al (2013) A general method for constructing atomic-resolution rna ensembles using nmr residual dipolar couplings: the basis for interhelical motions revealed. J Am Chem Soc 135(14):5457–5466. https://doi.org/10.1021/ja400920w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Horowitz S, Salmon L, Koldewey P et al (2016) Visualizing chaperone-assisted protein folding. Nat Struct Mol Biol 23(7):691–697. https://doi.org/10.1038/nsmb.3237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wals K, Ovaa H (2014) Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Front Chem 2:15. https://doi.org/10.3389/fchem.2014.00015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Santrucek J, Strohalm M, Kadlcik V et al (2004) Tyrosine residues modification studied by maldi-tof mass spectrometry. Biochem Biophys Res Commun 323(4):1151–1156. https://doi.org/10.1016/j.bbrc.2004.08.214

    Article  PubMed  CAS  Google Scholar 

  13. Kmiecik S, Gront D, Kolinski M et al (2016) Coarse-grained protein models and their applications. Chem Rev 116(14):7898–7936. https://doi.org/10.1021/acs.chemrev.6b00163

    Article  PubMed  CAS  Google Scholar 

  14. Salmon L, Ahlstrom LS, Horowitz S et al (2016) Capturing a dynamic chaperone-substrate interaction using nmr-informed molecular modeling. J Am Chem Soc 138(31):9826–9839. https://doi.org/10.1021/jacs.6b02382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ozenne V, Bauer F, Salmon L et al (2012) Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics 28(11):1463–1470. https://doi.org/10.1093/bioinformatics/bts172

    Article  PubMed  CAS  Google Scholar 

  16. Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106(5):1589–1615. https://doi.org/10.1021/cr040426m

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Miller BL, Goldberg DE (1995) Genetic algorithms, tournament selection, and the effects of noise. Complex Syst 9(3):193–212

    Google Scholar 

  18. Afonine PV, Grosse-Kunstleve RW, Echols N et al (2012) Towards automated crystallographic structure refinement with phenix.Refine. Acta Crystallogr D D68:352–367. https://doi.org/10.1107/S0907444912001308

    Article  CAS  Google Scholar 

  19. Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the ccp4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67(Pt 4):235–242. https://doi.org/10.1107/S0907444910045749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53(Pt 3):240–255. https://doi.org/10.1107/S0907444996012255

    Article  PubMed  CAS  Google Scholar 

  21. Grosse-Kunstleve RW, Sauter NK, Moriarty NW et al (2002) The computational crystallography toolbox: crystallographic algorithms in a reusable software framework. J Appl Crystallogr 35:126–136. https://doi.org/10.1107/S0021889801017824

    Article  CAS  Google Scholar 

  22. Press WH (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health (R01-GM102829 to J.C.A.B. and K99/R00-GM120388 to S.H.). J.C.A.B. is a Howard Hughes Medical Investigator. The authors would like to thank S. Rocchio for comments on the manuscript and M. Mourao for useful discussions. The authors would also like to thank C. Stockbridge and the LSA-IT development team for the assistance in coding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Loïc Salmon or Scott Horowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Salmon, L., Ahlstrom, L.S., Bardwell, J.C.A., Horowitz, S. (2018). Selecting Conformational Ensembles Using Residual Electron and Anomalous Density (READ). In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics