Skip to main content

Optimized Whole-Mount In Situ Immunolocalization for Arabidopsis thaliana Root Meristems and Lateral Root Primordia

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1761))

Abstract

Immunolocalization is a valuable tool for cell biology research that allows to rapidly determine the localization and expression levels of endogenous proteins. In plants, whole-mount in situ immunolocalization remains a challenging method, especially in tissues protected by waxy layers and complex cell wall carbohydrates. Here, we present a robust method for whole-mount in situ immunolocalization in primary root meristems and lateral root primordia in Arabidopsis thaliana. For good epitope preservation, fixation is done in an alkaline paraformaldehyde/glutaraldehyde mixture. This fixative is suitable for detecting a wide range of proteins, including integral transmembrane proteins and proteins peripherally attached to the plasma membrane. From initiation until emergence from the primary root, lateral root primordia are surrounded by several layers of differentiated tissues with a complex cell wall composition that interferes with the efficient penetration of all buffers. Therefore, immunolocalization in early lateral root primordia requires a modified method, including a strong solvent treatment for removal of hydrophobic barriers and a specific cocktail of cell wall-degrading enzymes. The presented method allows for easy, reliable, and high-quality in situ detection of the subcellular localization of endogenous proteins in primary and lateral root meristems without the need of time-consuming crosses or making translational fusions to fluorescent proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Crivat G, Taraska JW (2012) Imaging proteins inside cells with fluorescent tags. Trends Biotechnol 30:8–16

    Article  CAS  PubMed  Google Scholar 

  2. Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci U S A 97:3718–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sauer M, Paciorek T, Benková E, Friml J (2006) Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat Protoc 1:98–103

    Article  CAS  PubMed  Google Scholar 

  4. Paciorek T, Sauer M, Balla J et al (2006) Immunocytochemical technique for protein localization in sections of plant tissues. Nat Protoc 1:104–107

    Article  CAS  PubMed  Google Scholar 

  5. Moore I, Murphy A (2009) Validating the location of fluorescent protein fusions in the endomembrane system. Plant Cell Online 21:1632–1636

    Article  CAS  Google Scholar 

  6. Margolin W (2012) The price of tags in protein localization studies. J Bacteriol 194:6369–6371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pasternak T, Tietz O, Rapp K et al (2015) Protocol: an improved and universal procedure for whole-mount immunolocalization in plants. Plant Methods 11:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Escobar-Guzmán R, Rodríguez-Leal D, Vielle-Calzada J-P, Ronceret A (2015) Whole-mount immunolocalization to study female meiosis in Arabidopsis. Nat Protoc 10:1535–1542

    Article  CAS  PubMed  Google Scholar 

  9. Šamajová O, Komis G, Šamaj J (2014) In: Komis G, Šamaj J (eds) Immunofluorescent localization of MAPKs and colocalization with microtubules in Arabidopsis seedling whole-mount probes, Methods in molecular biology. Springer, New York, NY, pp 107–115

    Google Scholar 

  10. Chen W, Baldwin TC (2007) An improved method for the fixation, embedding and immunofluorescence labeling of resin-embedded plant tissue. Plant Mol Biol Report 25:27–35

    Article  CAS  Google Scholar 

  11. Szechyńska-Hebda M, Wędzony M, Dubas E et al (2006) Visualisation of microtubules and actin filaments in fixed BY-2 suspension cells using an optimised whole mount immunolabeling protocol. Plant Cell Rep 25:758–766

    Article  CAS  PubMed  Google Scholar 

  12. Boutté Y, Grebe M (2014) Immunocytochemical fluorescent in situ visualization of proteins in Arabidopsis. In: Sanchez-Serrano JJ, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, NJ, pp 453–472

    Chapter  Google Scholar 

  13. Pawlowski W, Grelon M, Armstrong S (2013) Plant meiosis, Methods and protocols. life sciences. Springer, New York

    Book  Google Scholar 

  14. Omelyanchuk NA, Kovrizhnykh VV, Oshchepkova EA et al (2016) A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root. BMC Plant Biol 16:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Wu W, Negre NN et al (2011) Determinants of antigenicity and specificity in immune response for protein sequences. BMC Bioinformatics 12:251

    Article  PubMed  PubMed Central  Google Scholar 

  16. O’Kennedy R, Murphy C, Devine T (2016) Technology advancements in antibody purification. Antibody Technol J 6:17–32

    Article  Google Scholar 

  17. Knox JP (2008) Revealing the structural and functional diversity of plant cell walls. Curr Opin Plant Biol 11:308–313

    Article  CAS  PubMed  Google Scholar 

  18. Willats WGT, McCartney L, Knox JP (2001) In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana. Planta 213:37–44

    Article  CAS  PubMed  Google Scholar 

  19. Forestan C, Carraro N, Varotto S (2013) Protein immunolocalization in maize tissues, Methods in molecular biology. Springer, New York, pp 207–222

    Google Scholar 

  20. Wasteneys GO, Willingale-Theune J, Menzel D (1997) Freeze shattering: a simple and effective method for permeabilizing higher plant cell walls. J Microsc 188:51–61

    Article  CAS  PubMed  Google Scholar 

  21. Braun M, Baluška F, von Witsch M, Menzel D (1999) Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta 209:435–443

    Article  CAS  PubMed  Google Scholar 

  22. Larson ER, Tierney ML, Tinaz B, Domozych DS (2014) Using monoclonal antibodies to label living root hairs: a novel tool for studying cell wall microarchitecture and dynamics in Arabidopsis. Plant Methods 10:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Avsian-Kretchmer O (2002) Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol 130:199–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Benková E, Michniewicz M, Sauer M et al (2003) Local, efflux-dependent Auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  25. De Diego N, Rodríguez JL, Dodd IC et al (2013) Immunolocalization of IAA and ABA in roots and needles of radiata pine (Pinus radiata) during drought and rewatering. Tree Physiol 33:537–549

    Article  CAS  PubMed  Google Scholar 

  26. Forestan C, Varotto S (2013) Auxin immunolocalization in plant tissues, Methods in molecular biology. Springer, New York, pp 223–233

    Google Scholar 

  27. Grizzle WE (2009) Special symposium: fixation and tissue processing models. Biotech Histochem 84:185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thavarajah R, Mudimbaimannar VK, Rao UK et al (2012) Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol 16:400

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jones D (1969) The reaction of formaldehyde with unsaturated fatty acids during histological fixation. Histochem J 1:459–491

    Article  CAS  PubMed  Google Scholar 

  30. Gigg R, Payne S (1969) The reaction of glutaraldehyde with tissue lipids. Chem Phys Lipids 3:292–295

    Article  CAS  PubMed  Google Scholar 

  31. Eltoum I, Fredenburgh J, Grizzle WE (2001) Advanced concepts in fixation: 1. Effects of fixation on immunohistochemistry, reversibility of fixation and recovery of proteins, nucleic acids, and other molecules from fixed and processed tissues. 2. Developmental methods of fixation. J Histotechnol 24:201–210

    Article  CAS  Google Scholar 

  32. Bacallao R, Sohrab S, Phillips C (2006) Guiding principles of specimen preservation for confocal fluorescence microscopy. In: Pawley JB (ed) Handbook of biological confocal microscope. Springer, Boston, MA, pp 368–380

    Chapter  Google Scholar 

  33. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques 37(790–6):798–802

    Google Scholar 

  34. Lee K, Choi S, Yang C et al (2013) Autofluorescence generation and elimination: a lesson from glutaraldehyde. Chem Commun (Camb) 49:3028–3030

    Article  CAS  Google Scholar 

  35. Nawrath C (2006) Unraveling the complex network of cuticular structure and function. Curr Opin Plant Biol 9:281–287

    Article  CAS  PubMed  Google Scholar 

  36. Jenks MA, Eigenbrode SD, Lemieux B (2002) Cuticular waxes of Arabidopsis. Arabidopsis Book 1:e0016

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  CAS  PubMed  Google Scholar 

  38. Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153:444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O'Neill MA, York WS (2003) The composition and structure of plant primary cell walls In: The plant cell wall. Rose JKC (ed.) Vol. 8, Blackwell Publishing Ltd, Oxford, UK

    Google Scholar 

  40. Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kolattukudy PE (2001) Polyester in higher plants. In: Babel W, Steinbuchel A (ed.) Advances in Biochemical Engineering/Biotechnology, Vol. 71. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  42. Kolattukudy PE (2001) Advances in Biochemical Engineering Biotechnology, Vol. 71. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  43. de Almeida Engler J, Van Montagu M, Engler G (1998) Whole-mount in situ hybridization in plants. In: Martinez-Zapater JM, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, NJ, pp 373–384

    Chapter  Google Scholar 

  44. Tainaka K, Kuno A, Kubota SI et al (2016) Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu Rev Cell Dev Biol 32:713–741

    Article  CAS  PubMed  Google Scholar 

  45. Geldner N, Anders N, Wolters H et al (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Vanneste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karampelias, M., Tejos, R., Friml, J., Vanneste, S. (2018). Optimized Whole-Mount In Situ Immunolocalization for Arabidopsis thaliana Root Meristems and Lateral Root Primordia. In: Ristova, D., Barbez, E. (eds) Root Development. Methods in Molecular Biology, vol 1761. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7747-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7747-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7746-8

  • Online ISBN: 978-1-4939-7747-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics